Transformers
GGUF
English
shining-valiant
shining-valiant-2
valiant
valiant-labs
llama
llama-3.2
llama-3.2-instruct
llama-3.2-instruct-3b
llama-3
llama-3-instruct
llama-3-instruct-3b
3b
science
physics
biology
chemistry
compsci
computer-science
engineering
technical
conversational
chat
instruct
Inference Endpoints
base_model: ValiantLabs/Llama3.2-3B-ShiningValiant2 | |
datasets: | |
- sequelbox/Celestia | |
- sequelbox/Spurline | |
- sequelbox/Supernova | |
language: | |
- en | |
library_name: transformers | |
license: llama3.2 | |
model_type: llama | |
quantized_by: mradermacher | |
tags: | |
- shining-valiant | |
- shining-valiant-2 | |
- valiant | |
- valiant-labs | |
- llama | |
- llama-3.2 | |
- llama-3.2-instruct | |
- llama-3.2-instruct-3b | |
- llama-3 | |
- llama-3-instruct | |
- llama-3-instruct-3b | |
- 3b | |
- science | |
- physics | |
- biology | |
- chemistry | |
- compsci | |
- computer-science | |
- engineering | |
- technical | |
- conversational | |
- chat | |
- instruct | |
## About | |
<!-- ### quantize_version: 2 --> | |
<!-- ### output_tensor_quantised: 1 --> | |
<!-- ### convert_type: hf --> | |
<!-- ### vocab_type: --> | |
<!-- ### tags: --> | |
static quants of https://huggingface.co/ValiantLabs/Llama3.2-3B-ShiningValiant2 | |
<!-- provided-files --> | |
weighted/imatrix quants are available at https://huggingface.co/mradermacher/Llama3.2-3B-ShiningValiant2-i1-GGUF | |
## Usage | |
If you are unsure how to use GGUF files, refer to one of [TheBloke's | |
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for | |
more details, including on how to concatenate multi-part files. | |
## Provided Quants | |
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | |
| Link | Type | Size/GB | Notes | | |
|:-----|:-----|--------:|:------| | |
| [GGUF](https://huggingface.co/mradermacher/Llama3.2-3B-ShiningValiant2-GGUF/resolve/main/Llama3.2-3B-ShiningValiant2.Q2_K.gguf) | Q2_K | 1.5 | | | |
| [GGUF](https://huggingface.co/mradermacher/Llama3.2-3B-ShiningValiant2-GGUF/resolve/main/Llama3.2-3B-ShiningValiant2.Q3_K_S.gguf) | Q3_K_S | 1.6 | | | |
| [GGUF](https://huggingface.co/mradermacher/Llama3.2-3B-ShiningValiant2-GGUF/resolve/main/Llama3.2-3B-ShiningValiant2.Q3_K_M.gguf) | Q3_K_M | 1.8 | lower quality | | |
| [GGUF](https://huggingface.co/mradermacher/Llama3.2-3B-ShiningValiant2-GGUF/resolve/main/Llama3.2-3B-ShiningValiant2.Q3_K_L.gguf) | Q3_K_L | 1.9 | | | |
| [GGUF](https://huggingface.co/mradermacher/Llama3.2-3B-ShiningValiant2-GGUF/resolve/main/Llama3.2-3B-ShiningValiant2.IQ4_XS.gguf) | IQ4_XS | 1.9 | | | |
| [GGUF](https://huggingface.co/mradermacher/Llama3.2-3B-ShiningValiant2-GGUF/resolve/main/Llama3.2-3B-ShiningValiant2.Q4_0_4_4.gguf) | Q4_0_4_4 | 2.0 | fast on arm, low quality | | |
| [GGUF](https://huggingface.co/mradermacher/Llama3.2-3B-ShiningValiant2-GGUF/resolve/main/Llama3.2-3B-ShiningValiant2.Q4_K_S.gguf) | Q4_K_S | 2.0 | fast, recommended | | |
| [GGUF](https://huggingface.co/mradermacher/Llama3.2-3B-ShiningValiant2-GGUF/resolve/main/Llama3.2-3B-ShiningValiant2.Q4_K_M.gguf) | Q4_K_M | 2.1 | fast, recommended | | |
| [GGUF](https://huggingface.co/mradermacher/Llama3.2-3B-ShiningValiant2-GGUF/resolve/main/Llama3.2-3B-ShiningValiant2.Q5_K_S.gguf) | Q5_K_S | 2.4 | | | |
| [GGUF](https://huggingface.co/mradermacher/Llama3.2-3B-ShiningValiant2-GGUF/resolve/main/Llama3.2-3B-ShiningValiant2.Q5_K_M.gguf) | Q5_K_M | 2.4 | | | |
| [GGUF](https://huggingface.co/mradermacher/Llama3.2-3B-ShiningValiant2-GGUF/resolve/main/Llama3.2-3B-ShiningValiant2.Q6_K.gguf) | Q6_K | 2.7 | very good quality | | |
| [GGUF](https://huggingface.co/mradermacher/Llama3.2-3B-ShiningValiant2-GGUF/resolve/main/Llama3.2-3B-ShiningValiant2.Q8_0.gguf) | Q8_0 | 3.5 | fast, best quality | | |
| [GGUF](https://huggingface.co/mradermacher/Llama3.2-3B-ShiningValiant2-GGUF/resolve/main/Llama3.2-3B-ShiningValiant2.f16.gguf) | f16 | 6.5 | 16 bpw, overkill | | |
Here is a handy graph by ikawrakow comparing some lower-quality quant | |
types (lower is better): | |
![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) | |
And here are Artefact2's thoughts on the matter: | |
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 | |
## FAQ / Model Request | |
See https://huggingface.co/mradermacher/model_requests for some answers to | |
questions you might have and/or if you want some other model quantized. | |
## Thanks | |
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting | |
me use its servers and providing upgrades to my workstation to enable | |
this work in my free time. | |
<!-- end --> | |