|
--- |
|
base_model: langtech-dev/Salamandra-7b-RAG-v2 |
|
language: |
|
- bg |
|
- ca |
|
- code |
|
- cs |
|
- cy |
|
- da |
|
- de |
|
- el |
|
- en |
|
- es |
|
- et |
|
- eu |
|
- fi |
|
- fr |
|
- ga |
|
- gl |
|
- hr |
|
- hu |
|
- it |
|
- lt |
|
- lv |
|
- mt |
|
- nl |
|
- nn |
|
- \no |
|
- oc |
|
- pl |
|
- pt |
|
- ro |
|
- ru |
|
- sh |
|
- sk |
|
- sl |
|
- sr |
|
- sv |
|
- uk |
|
library_name: transformers |
|
license: apache-2.0 |
|
quantized_by: mradermacher |
|
--- |
|
## About |
|
|
|
<!-- ### quantize_version: 2 --> |
|
<!-- ### output_tensor_quantised: 1 --> |
|
<!-- ### convert_type: hf --> |
|
<!-- ### vocab_type: --> |
|
<!-- ### tags: --> |
|
static quants of https://huggingface.co/langtech-dev/Salamandra-7b-RAG-v2 |
|
|
|
<!-- provided-files --> |
|
weighted/imatrix quants are available at https://huggingface.co/mradermacher/Salamandra-7b-RAG-v2-i1-GGUF |
|
## Usage |
|
|
|
If you are unsure how to use GGUF files, refer to one of [TheBloke's |
|
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for |
|
more details, including on how to concatenate multi-part files. |
|
|
|
## Provided Quants |
|
|
|
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) |
|
|
|
| Link | Type | Size/GB | Notes | |
|
|:-----|:-----|--------:|:------| |
|
| [GGUF](https://huggingface.co/mradermacher/Salamandra-7b-RAG-v2-GGUF/resolve/main/Salamandra-7b-RAG-v2.Q2_K.gguf) | Q2_K | 3.4 | | |
|
| [GGUF](https://huggingface.co/mradermacher/Salamandra-7b-RAG-v2-GGUF/resolve/main/Salamandra-7b-RAG-v2.Q3_K_S.gguf) | Q3_K_S | 3.9 | | |
|
| [GGUF](https://huggingface.co/mradermacher/Salamandra-7b-RAG-v2-GGUF/resolve/main/Salamandra-7b-RAG-v2.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality | |
|
| [GGUF](https://huggingface.co/mradermacher/Salamandra-7b-RAG-v2-GGUF/resolve/main/Salamandra-7b-RAG-v2.Q3_K_L.gguf) | Q3_K_L | 4.4 | | |
|
| [GGUF](https://huggingface.co/mradermacher/Salamandra-7b-RAG-v2-GGUF/resolve/main/Salamandra-7b-RAG-v2.IQ4_XS.gguf) | IQ4_XS | 4.6 | | |
|
| [GGUF](https://huggingface.co/mradermacher/Salamandra-7b-RAG-v2-GGUF/resolve/main/Salamandra-7b-RAG-v2.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended | |
|
| [GGUF](https://huggingface.co/mradermacher/Salamandra-7b-RAG-v2-GGUF/resolve/main/Salamandra-7b-RAG-v2.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended | |
|
| [GGUF](https://huggingface.co/mradermacher/Salamandra-7b-RAG-v2-GGUF/resolve/main/Salamandra-7b-RAG-v2.Q5_K_S.gguf) | Q5_K_S | 5.6 | | |
|
| [GGUF](https://huggingface.co/mradermacher/Salamandra-7b-RAG-v2-GGUF/resolve/main/Salamandra-7b-RAG-v2.Q5_K_M.gguf) | Q5_K_M | 5.7 | | |
|
| [GGUF](https://huggingface.co/mradermacher/Salamandra-7b-RAG-v2-GGUF/resolve/main/Salamandra-7b-RAG-v2.Q6_K.gguf) | Q6_K | 6.5 | very good quality | |
|
| [GGUF](https://huggingface.co/mradermacher/Salamandra-7b-RAG-v2-GGUF/resolve/main/Salamandra-7b-RAG-v2.Q8_0.gguf) | Q8_0 | 8.4 | fast, best quality | |
|
| [GGUF](https://huggingface.co/mradermacher/Salamandra-7b-RAG-v2-GGUF/resolve/main/Salamandra-7b-RAG-v2.f16.gguf) | f16 | 15.6 | 16 bpw, overkill | |
|
|
|
Here is a handy graph by ikawrakow comparing some lower-quality quant |
|
types (lower is better): |
|
|
|
![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) |
|
|
|
And here are Artefact2's thoughts on the matter: |
|
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 |
|
|
|
## FAQ / Model Request |
|
|
|
See https://huggingface.co/mradermacher/model_requests for some answers to |
|
questions you might have and/or if you want some other model quantized. |
|
|
|
## Thanks |
|
|
|
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting |
|
me use its servers and providing upgrades to my workstation to enable |
|
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. |
|
|
|
<!-- end --> |
|
|