File size: 2,289 Bytes
5426d64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- t5_squad
model-index:
- name: t5-simple-qg-eng
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-simple-qg-eng
This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the t5_squad dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5682
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 7
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.584 | 0.34 | 100 | 1.9108 |
| 1.9664 | 0.68 | 200 | 1.7275 |
| 1.8466 | 1.02 | 300 | 1.6634 |
| 1.7412 | 1.36 | 400 | 1.6383 |
| 1.7134 | 1.69 | 500 | 1.6202 |
| 1.694 | 2.03 | 600 | 1.6049 |
| 1.6297 | 2.37 | 700 | 1.5975 |
| 1.6261 | 2.71 | 800 | 1.5932 |
| 1.6149 | 3.05 | 900 | 1.5875 |
| 1.569 | 3.39 | 1000 | 1.5893 |
| 1.5683 | 3.73 | 1100 | 1.5740 |
| 1.5569 | 4.07 | 1200 | 1.5785 |
| 1.5331 | 4.41 | 1300 | 1.5733 |
| 1.5216 | 4.75 | 1400 | 1.5705 |
| 1.5226 | 5.08 | 1500 | 1.5735 |
| 1.4933 | 5.42 | 1600 | 1.5703 |
| 1.4845 | 5.76 | 1700 | 1.5683 |
| 1.5077 | 6.1 | 1800 | 1.5684 |
| 1.4749 | 6.44 | 1900 | 1.5727 |
| 1.4757 | 6.78 | 2000 | 1.5682 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.10.1
- Tokenizers 0.13.2
|