Qwen2.5-Coder Models
Collection
Language-Specific finetune models of Qwen2.5-Coder.
•
5 items
•
Updated
axolotl version: 0.6.0
# axolotl_config.yaml
# Model configuration
base_model: Qwen/Qwen2.5-Coder-3B-Instruct
hub_model_id: mrcuddle/Qwen2.5-Coder-3B-Instruct-TS
# Training parameters
learning_rate: 0.0001 # Adjusted for potential stability improvement
train_batch_size: 4 # Increased for better gradient estimates
eval_batch_size: 4 # Increased for better evaluation stability
num_epochs: 1
lr_scheduler_type: cosine
lr_scheduler_warmup_steps: 10
gradient_accumulation_steps: 2
micro_batch_size: 1
# Distributed training settings
distributed_type: GPU
num_devices: 2 # Adjusted to utilize multiple GPUs if available
total_train_batch_size: 8 # Adjusted to match train_batch_size * num_devices * gradient_accumulation_steps
total_eval_batch_size: 8 # Adjusted to match eval_batch_size * num_devices * gradient_accumulation_steps
# Random seed for reproducibility
seed: 42
datasets:
- path: mhhmm/typescript-instruct-20k
type: alpaca
field_instruction: instruction
field_output: output
format: "[INST] {instruction} [/INST]\n{output}"
no_input_format: "[INST] {instruction} [/INST]"
roles:
input: ["USER"]
output: ["ASSISTANT"]
This model is a fine-tuned version of Qwen/Qwen2.5-Coder-3B-Instruct on the mhhmm/typescript-instruct-20k dataset.
More information needed
More information needed
More information needed
The following hyperparameters were used during training: