layoutlm-funsd
This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:
- Loss: 0.7094
- Answer: {'precision': 0.7131868131868132, 'recall': 0.8022249690976514, 'f1': 0.755090168702734, 'number': 809}
- Header: {'precision': 0.3445378151260504, 'recall': 0.3445378151260504, 'f1': 0.3445378151260504, 'number': 119}
- Question: {'precision': 0.7785651018600531, 'recall': 0.8253521126760563, 'f1': 0.8012762078395624, 'number': 1065}
- Overall Precision: 0.7271
- Overall Recall: 0.7873
- Overall F1: 0.7560
- Overall Accuracy: 0.8026
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
---|---|---|---|---|---|---|---|---|---|---|
1.7767 | 1.0 | 10 | 1.5683 | {'precision': 0.021764032073310423, 'recall': 0.023485784919653894, 'f1': 0.022592152199762183, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.214987714987715, 'recall': 0.1643192488262911, 'f1': 0.18626929217668972, 'number': 1065} | 0.1150 | 0.0973 | 0.1054 | 0.3768 |
1.4234 | 2.0 | 20 | 1.2196 | {'precision': 0.1918194640338505, 'recall': 0.1681087762669963, 'f1': 0.17918313570487485, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.4225037257824143, 'recall': 0.532394366197183, 'f1': 0.47112588284171164, 'number': 1065} | 0.3409 | 0.3527 | 0.3467 | 0.5773 |
1.0839 | 3.0 | 30 | 0.9585 | {'precision': 0.4686390532544379, 'recall': 0.4894932014833127, 'f1': 0.4788391777509069, 'number': 809} | {'precision': 0.13043478260869565, 'recall': 0.05042016806722689, 'f1': 0.07272727272727272, 'number': 119} | {'precision': 0.5354637568199533, 'recall': 0.6450704225352113, 'f1': 0.5851788756388415, 'number': 1065} | 0.5009 | 0.5464 | 0.5227 | 0.7008 |
0.8429 | 4.0 | 40 | 0.8025 | {'precision': 0.6150583244962884, 'recall': 0.7169344870210136, 'f1': 0.6621004566210046, 'number': 809} | {'precision': 0.32142857142857145, 'recall': 0.15126050420168066, 'f1': 0.20571428571428574, 'number': 119} | {'precision': 0.6584536958368734, 'recall': 0.7276995305164319, 'f1': 0.6913470115967887, 'number': 1065} | 0.6310 | 0.6889 | 0.6587 | 0.7534 |
0.6591 | 5.0 | 50 | 0.7255 | {'precision': 0.6464208242950108, 'recall': 0.7367119901112484, 'f1': 0.6886192952050838, 'number': 809} | {'precision': 0.25, 'recall': 0.19327731092436976, 'f1': 0.2180094786729858, 'number': 119} | {'precision': 0.6565891472868217, 'recall': 0.7953051643192488, 'f1': 0.7193205944798302, 'number': 1065} | 0.6363 | 0.7356 | 0.6823 | 0.7769 |
0.5607 | 6.0 | 60 | 0.7110 | {'precision': 0.6417759838546923, 'recall': 0.7861557478368356, 'f1': 0.7066666666666668, 'number': 809} | {'precision': 0.30337078651685395, 'recall': 0.226890756302521, 'f1': 0.2596153846153846, 'number': 119} | {'precision': 0.7202432667245873, 'recall': 0.7784037558685446, 'f1': 0.7481949458483754, 'number': 1065} | 0.6688 | 0.7486 | 0.7064 | 0.7806 |
0.483 | 7.0 | 70 | 0.6787 | {'precision': 0.6635120925341745, 'recall': 0.7799752781211372, 'f1': 0.7170454545454545, 'number': 809} | {'precision': 0.2777777777777778, 'recall': 0.25210084033613445, 'f1': 0.2643171806167401, 'number': 119} | {'precision': 0.7391688770999116, 'recall': 0.7849765258215963, 'f1': 0.761384335154827, 'number': 1065} | 0.6836 | 0.7511 | 0.7158 | 0.7923 |
0.4275 | 8.0 | 80 | 0.6793 | {'precision': 0.6615067079463365, 'recall': 0.792336217552534, 'f1': 0.7210348706411699, 'number': 809} | {'precision': 0.29906542056074764, 'recall': 0.2689075630252101, 'f1': 0.28318584070796454, 'number': 119} | {'precision': 0.7489139878366637, 'recall': 0.8093896713615023, 'f1': 0.7779783393501806, 'number': 1065} | 0.6893 | 0.7702 | 0.7275 | 0.7970 |
0.3762 | 9.0 | 90 | 0.6784 | {'precision': 0.6949516648764769, 'recall': 0.799752781211372, 'f1': 0.7436781609195402, 'number': 809} | {'precision': 0.3333333333333333, 'recall': 0.3277310924369748, 'f1': 0.3305084745762712, 'number': 119} | {'precision': 0.7506493506493507, 'recall': 0.8140845070422535, 'f1': 0.781081081081081, 'number': 1065} | 0.7049 | 0.7792 | 0.7402 | 0.8000 |
0.3634 | 10.0 | 100 | 0.6793 | {'precision': 0.6964477933261571, 'recall': 0.799752781211372, 'f1': 0.7445339470655927, 'number': 809} | {'precision': 0.375, 'recall': 0.3277310924369748, 'f1': 0.3497757847533633, 'number': 119} | {'precision': 0.7650655021834061, 'recall': 0.8225352112676056, 'f1': 0.7927601809954752, 'number': 1065} | 0.7172 | 0.7837 | 0.7490 | 0.8033 |
0.3104 | 11.0 | 110 | 0.6977 | {'precision': 0.694327731092437, 'recall': 0.8170580964153276, 'f1': 0.750709823963657, 'number': 809} | {'precision': 0.33613445378151263, 'recall': 0.33613445378151263, 'f1': 0.33613445378151263, 'number': 119} | {'precision': 0.7766903914590747, 'recall': 0.819718309859155, 'f1': 0.7976244860666972, 'number': 1065} | 0.7171 | 0.7898 | 0.7517 | 0.8032 |
0.2928 | 12.0 | 120 | 0.6987 | {'precision': 0.6931330472103004, 'recall': 0.7985166872682324, 'f1': 0.7421022400919012, 'number': 809} | {'precision': 0.4, 'recall': 0.35294117647058826, 'f1': 0.37500000000000006, 'number': 119} | {'precision': 0.7809439002671416, 'recall': 0.8234741784037559, 'f1': 0.8016453382084096, 'number': 1065} | 0.7245 | 0.7852 | 0.7537 | 0.8028 |
0.2766 | 13.0 | 130 | 0.7057 | {'precision': 0.6996770721205597, 'recall': 0.8034610630407911, 'f1': 0.7479861910241656, 'number': 809} | {'precision': 0.3277310924369748, 'recall': 0.3277310924369748, 'f1': 0.3277310924369748, 'number': 119} | {'precision': 0.7749338040600177, 'recall': 0.8244131455399061, 'f1': 0.7989080982711555, 'number': 1065} | 0.7185 | 0.7863 | 0.7508 | 0.8031 |
0.2627 | 14.0 | 140 | 0.7089 | {'precision': 0.7063318777292577, 'recall': 0.799752781211372, 'f1': 0.750144927536232, 'number': 809} | {'precision': 0.3652173913043478, 'recall': 0.35294117647058826, 'f1': 0.35897435897435903, 'number': 119} | {'precision': 0.7798408488063661, 'recall': 0.828169014084507, 'f1': 0.8032786885245902, 'number': 1065} | 0.7266 | 0.7883 | 0.7562 | 0.8012 |
0.2561 | 15.0 | 150 | 0.7094 | {'precision': 0.7131868131868132, 'recall': 0.8022249690976514, 'f1': 0.755090168702734, 'number': 809} | {'precision': 0.3445378151260504, 'recall': 0.3445378151260504, 'f1': 0.3445378151260504, 'number': 119} | {'precision': 0.7785651018600531, 'recall': 0.8253521126760563, 'f1': 0.8012762078395624, 'number': 1065} | 0.7271 | 0.7873 | 0.7560 | 0.8026 |
Framework versions
- Transformers 4.44.0
- Pytorch 2.2.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 10
Model tree for mreizasyaifullah/layoutlm-funsd
Base model
microsoft/layoutlm-base-uncased