See axolotl config
axolotl version: 0.4.1
adapter: lora
auto_find_batch_size: true
base_model: NousResearch/Yarn-Solar-10b-64k
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
- c92128223de95d2d_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/c92128223de95d2d_train_data.json
type:
field_instruction: question
field_output: reference_answer
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
early_stopping_threshold: 0.001
eval_max_new_tokens: 128
eval_steps: 40
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: false
group_by_length: false
hub_model_id: mrferr3t/c63285bc-20f0-4f98-b8ef-bbbcafcae9ca
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0003
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 100
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
micro_batch_size: 32
mlflow_experiment_name: /tmp/c92128223de95d2d_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 50
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
s2_attention: null
sample_packing: false
save_steps: 40
saves_per_epoch: 0
sequence_len: 512
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.02
wandb_entity: null
wandb_mode: online
wandb_name: d2b90f0a-d212-4f06-97d6-1732294d1a57
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: d2b90f0a-d212-4f06-97d6-1732294d1a57
warmup_ratio: 0.05
weight_decay: 0.0
xformers_attention: null
c63285bc-20f0-4f98-b8ef-bbbcafcae9ca
This model is a fine-tuned version of NousResearch/Yarn-Solar-10b-64k on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1590
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 457
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0014 | 1 | 3.1910 |
No log | 0.0546 | 40 | 1.1452 |
No log | 0.1092 | 80 | 0.2157 |
2.5477 | 0.1638 | 120 | 0.1648 |
2.5477 | 0.2184 | 160 | 0.1643 |
0.3489 | 0.2730 | 200 | 0.1330 |
0.3489 | 0.3276 | 240 | 0.1572 |
0.3489 | 0.3823 | 280 | 0.1556 |
0.3211 | 0.4369 | 320 | 0.1590 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.3.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for mrferr3t/c63285bc-20f0-4f98-b8ef-bbbcafcae9ca
Base model
NousResearch/Yarn-Solar-10b-64k