librarian-bot's picture
Librarian Bot: Add base_model information to model
a2bafe7
|
raw
history blame
2.22 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - arxiv_summarization_dataset
metrics:
  - rouge
base_model: sshleifer/distilbart-cnn-12-6
model-index:
  - name: distilbart-cnn-12-6-finetuned-30k-3epoch
    results:
      - task:
          type: text2text-generation
          name: Sequence-to-sequence Language Modeling
        dataset:
          name: arxiv_summarization_dataset
          type: arxiv_summarization_dataset
          config: section
          split: test[:2000]
          args: section
        metrics:
          - type: rouge
            value: 43.696
            name: Rouge1

distilbart-cnn-12-6-finetuned-30k-3epoch

This model is a fine-tuned version of sshleifer/distilbart-cnn-12-6 on the arxiv_summarization_dataset dataset. It achieves the following results on the evaluation set:

  • Loss: 2.3411
  • Rouge1: 43.696
  • Rouge2: 15.6681
  • Rougel: 25.6889
  • Rougelsum: 38.574
  • Gen Len: 121.98

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
2.7304 1.0 3750 2.4322 43.0913 15.1302 25.2555 38.0346 122.3755
2.3518 2.0 7500 2.3613 43.8799 15.6977 25.6984 38.7646 122.6945
2.2318 3.0 11250 2.3411 43.696 15.6681 25.6889 38.574 121.98

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.0
  • Datasets 2.1.0
  • Tokenizers 0.13.3