license: apache-2.0
language:
- en
pipeline_tag: text-generation
library_name: transformers
tags:
- alpaca
- bloom
- LLM
AlpacOOM: Alpaca + BLOOM
Adapter Description
This adapter was created by using the PEFT library and allowed the base model BigScience/BLOOM 7B1 to be fine-tuned on the Stanford's Alpaca Dataset by using the method LoRA.
Model Description
BigScience Large Open-science Open-access Multilingual Language Model
Training data
Alpaca is a dataset of 52,000 instructions and demonstrations generated by OpenAI's text-davinci-003
engine. This instruction data can be used to conduct instruction-tuning for language models and make the language model follow instruction better.
The authors built on the data generation pipeline from Self-Instruct framework and made the following modifications:
- The
text-davinci-003
engine to generate the instruction data instead ofdavinci
. - A new prompt was written that explicitly gave the requirement of instruction generation to
text-davinci-003
. - Much more aggressive batch decoding was used, i.e., generating 20 instructions at once, which significantly reduced the cost of data generation.
- The data generation pipeline was simplified by discarding the difference between classification and non-classification instructions.
- Only a single instance was generated for each instruction, instead of 2 to 3 instances as in Self-Instruct.
This produced an instruction-following dataset with 52K examples obtained at a much lower cost (less than $500). In a preliminary study, the authors also found that the 52K generated data to be much more diverse than the data released by Self-Instruct.
Supported Tasks and Leaderboards
The Alpaca dataset is designed for instruction training pre-trained language models.
Training procedure
TBA
How to use