Spanish BERT (BETO) + NER
This model is a fine-tuned on NER-C version of the Spanish BERT cased (BETO) for NER downstream task.
Details of the downstream task (NER) - Dataset
I preprocessed the dataset and split it as train / dev (80/20)
Dataset | # Examples |
---|---|
Train | 8.7 K |
Dev | 2.2 K |
Labels covered:
B-LOC
B-MISC
B-ORG
B-PER
I-LOC
I-MISC
I-ORG
I-PER
O
Metrics on evaluation set:
Metric | # score |
---|---|
F1 | 90.17 |
Precision | 89.86 |
Recall | 90.47 |
Comparison:
Model | # F1 score | Size(MB) |
---|---|---|
bert-base-spanish-wwm-cased (BETO) | 88.43 | 421 |
bert-spanish-cased-finetuned-ner (this one) | 90.17 | 420 |
Best Multilingual BERT | 87.38 | 681 |
TinyBERT-spanish-uncased-finetuned-ner | 70.00 | 55 |
Model in action
Fast usage with pipelines:
from transformers import pipeline
nlp_ner = pipeline(
"ner",
model="mrm8488/bert-spanish-cased-finetuned-ner",
tokenizer=(
'mrm8488/bert-spanish-cased-finetuned-ner',
{"use_fast": False}
))
text = 'Mis amigos estΓ‘n pensando viajar a Londres este verano'
nlp_ner(text)
#Output: [{'entity': 'B-LOC', 'score': 0.9998720288276672, 'word': 'Londres'}]
Created by Manuel Romero/@mrm8488
Made with β₯ in Spain
- Downloads last month
- 2,147
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.