mrm8488's picture
Update README.md
2013a93
|
raw
history blame
2.22 kB
metadata
license: bigscience-bloom-rail-1.0
tags:
  - generated_from_trainer
model-index:
  - name: bloom-560m-finetuned-the-stack-prolog
    results: []
widget:
  - text: >-
      % Define un hecho que indica que "hello" es un saludo saludo("hello").

      % Define una regla que indica que "world" es un objeto objeto("world").

      % Define una regla que combina el saludo y el objeto para producir la
      salida "Hola mundo" hola_mundo :- saludo(Saludo), objeto(Objeto),
      write(Saludo), write(" "), write(Objeto).

bloom-560m-finetuned-the-stack-prolog

This model is a fine-tuned version of bigscience/bloom-560m on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2433

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 1
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
1.2334 0.2 200 0.9993
0.9174 0.4 400 0.7460
0.7892 0.6 600 0.6046
0.6805 0.8 800 0.4964
0.5898 0.99 1000 0.4283
0.411 1.19 1200 0.3721
0.3705 1.39 1400 0.3182
0.3516 1.59 1600 0.2795
0.3298 1.79 1800 0.2528
0.2721 1.99 2000 0.2433

Framework versions

  • Transformers 4.24.0
  • Pytorch 1.13.0+cu117
  • Datasets 2.5.1
  • Tokenizers 0.13.0