mrm8488's picture
update model card README.md
56b5cba
---
license: mit
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: data2vec-text-base-finetuned-sst2
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
args: sst2
metrics:
- name: Accuracy
type: accuracy
value: 0.9231651376146789
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# data2vec-text-base-finetuned-sst2
This model is a fine-tuned version of [facebook/data2vec-text-base](https://huggingface.co/facebook/data2vec-text-base) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3600
- Accuracy: 0.9232
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.1519343408010398e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.2865 | 1.0 | 4210 | 0.2662 | 0.9128 |
| 0.2256 | 2.0 | 8420 | 0.3698 | 0.9002 |
| 0.1676 | 3.0 | 12630 | 0.3107 | 0.9186 |
| 0.1481 | 4.0 | 16840 | 0.3425 | 0.9186 |
| 0.1429 | 5.0 | 21050 | 0.3600 | 0.9232 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.11.0+cu113
- Datasets 2.1.0
- Tokenizers 0.12.1