SentenceTransformer based on distilbert/distilbert-base-uncased
	
This is a sentence-transformers model finetuned from distilbert/distilbert-base-uncased on the sentence-transformers/stsb dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
	
		
	
	
		Model Details
	
	
		
	
	
		Model Description
	
- Model Type: Sentence Transformer
- Base model: distilbert/distilbert-base-uncased 
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
	
		
	
	
		Model Sources
	
	
		
	
	
		Full Model Architecture
	
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
	
		
	
	
		Usage
	
	
		
	
	
		Direct Usage (Sentence Transformers)
	
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("mrm8488/distilbert-base-matryoshka-sts")
sentences = [
    'A baby is laughing.',
    'The baby laughed in his car seat.',
    'A brown horse in a green field.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
	
		
	
	
		Evaluation
	
	
		
	
	
		Metrics
	
	
		
	
	
		Semantic Similarity
	
	
		
| Metric | Value | 
		
| pearson_cosine | 0.8597 | 
| spearman_cosine | 0.8705 | 
| pearson_manhattan | 0.8577 | 
| spearman_manhattan | 0.8613 | 
| pearson_euclidean | 0.8574 | 
| spearman_euclidean | 0.8611 | 
| pearson_dot | 0.7231 | 
| spearman_dot | 0.7293 | 
| pearson_max | 0.8597 | 
| spearman_max | 0.8705 | 
	
 
	
		
	
	
		Semantic Similarity
	
	
		
| Metric | Value | 
		
| pearson_cosine | 0.8566 | 
| spearman_cosine | 0.869 | 
| pearson_manhattan | 0.8561 | 
| spearman_manhattan | 0.8602 | 
| pearson_euclidean | 0.856 | 
| spearman_euclidean | 0.8598 | 
| pearson_dot | 0.7251 | 
| spearman_dot | 0.7325 | 
| pearson_max | 0.8566 | 
| spearman_max | 0.869 | 
	
 
	
		
	
	
		Semantic Similarity
	
	
		
| Metric | Value | 
		
| pearson_cosine | 0.8509 | 
| spearman_cosine | 0.8656 | 
| pearson_manhattan | 0.8516 | 
| spearman_manhattan | 0.8576 | 
| pearson_euclidean | 0.8513 | 
| spearman_euclidean | 0.8567 | 
| pearson_dot | 0.6913 | 
| spearman_dot | 0.6984 | 
| pearson_max | 0.8516 | 
| spearman_max | 0.8656 | 
	
 
	
		
	
	
		Semantic Similarity
	
	
		
| Metric | Value | 
		
| pearson_cosine | 0.8416 | 
| spearman_cosine | 0.8626 | 
| pearson_manhattan | 0.841 | 
| spearman_manhattan | 0.8496 | 
| pearson_euclidean | 0.8432 | 
| spearman_euclidean | 0.8506 | 
| pearson_dot | 0.6776 | 
| spearman_dot | 0.6865 | 
| pearson_max | 0.8432 | 
| spearman_max | 0.8626 | 
	
 
	
		
	
	
		Semantic Similarity
	
	
		
| Metric | Value | 
		
| pearson_cosine | 0.8232 | 
| spearman_cosine | 0.8523 | 
| pearson_manhattan | 0.8255 | 
| spearman_manhattan | 0.8358 | 
| pearson_euclidean | 0.8292 | 
| spearman_euclidean | 0.8385 | 
| pearson_dot | 0.6416 | 
| spearman_dot | 0.6564 | 
| pearson_max | 0.8292 | 
| spearman_max | 0.8523 | 
	
 
	
		
	
	
		Semantic Similarity
	
	
		
| Metric | Value | 
		
| pearson_cosine | 0.7903 | 
| spearman_cosine | 0.8328 | 
| pearson_manhattan | 0.8032 | 
| spearman_manhattan | 0.8168 | 
| pearson_euclidean | 0.8079 | 
| spearman_euclidean | 0.8196 | 
| pearson_dot | 0.5952 | 
| spearman_dot | 0.5992 | 
| pearson_max | 0.8079 | 
| spearman_max | 0.8328 | 
	
 
	
		
	
	
		Semantic Similarity
	
	
		
| Metric | Value | 
		
| pearson_cosine | 0.8259 | 
| spearman_cosine | 0.842 | 
| pearson_manhattan | 0.8417 | 
| spearman_manhattan | 0.8394 | 
| pearson_euclidean | 0.8417 | 
| spearman_euclidean | 0.8393 | 
| pearson_dot | 0.6531 | 
| spearman_dot | 0.6396 | 
| pearson_max | 0.8417 | 
| spearman_max | 0.842 | 
	
 
	
		
	
	
		Semantic Similarity
	
	
		
| Metric | Value | 
		
| pearson_cosine | 0.8243 | 
| spearman_cosine | 0.8418 | 
| pearson_manhattan | 0.8406 | 
| spearman_manhattan | 0.8388 | 
| pearson_euclidean | 0.8406 | 
| spearman_euclidean | 0.8386 | 
| pearson_dot | 0.6578 | 
| spearman_dot | 0.6453 | 
| pearson_max | 0.8406 | 
| spearman_max | 0.8418 | 
	
 
	
		
	
	
		Semantic Similarity
	
	
		
| Metric | Value | 
		
| pearson_cosine | 0.8128 | 
| spearman_cosine | 0.8344 | 
| pearson_manhattan | 0.835 | 
| spearman_manhattan | 0.8339 | 
| pearson_euclidean | 0.835 | 
| spearman_euclidean | 0.8342 | 
| pearson_dot | 0.6011 | 
| spearman_dot | 0.5827 | 
| pearson_max | 0.835 | 
| spearman_max | 0.8344 | 
	
 
	
		
	
	
		Semantic Similarity
	
	
		
| Metric | Value | 
		
| pearson_cosine | 0.8037 | 
| spearman_cosine | 0.8297 | 
| pearson_manhattan | 0.8283 | 
| spearman_manhattan | 0.8293 | 
| pearson_euclidean | 0.8286 | 
| spearman_euclidean | 0.8295 | 
| pearson_dot | 0.5793 | 
| spearman_dot | 0.566 | 
| pearson_max | 0.8286 | 
| spearman_max | 0.8297 | 
	
 
	
		
	
	
		Semantic Similarity
	
	
		
| Metric | Value | 
		
| pearson_cosine | 0.7862 | 
| spearman_cosine | 0.8221 | 
| pearson_manhattan | 0.8179 | 
| spearman_manhattan | 0.8219 | 
| pearson_euclidean | 0.8199 | 
| spearman_euclidean | 0.8241 | 
| pearson_dot | 0.5115 | 
| spearman_dot | 0.5024 | 
| pearson_max | 0.8199 | 
| spearman_max | 0.8241 | 
	
 
	
		
	
	
		Semantic Similarity
	
	
		
| Metric | Value | 
		
| pearson_cosine | 0.7616 | 
| spearman_cosine | 0.8126 | 
| pearson_manhattan | 0.7996 | 
| spearman_manhattan | 0.8084 | 
| pearson_euclidean | 0.8024 | 
| spearman_euclidean | 0.8116 | 
| pearson_dot | 0.4647 | 
| spearman_dot | 0.451 | 
| pearson_max | 0.8024 | 
| spearman_max | 0.8126 | 
	
 
	
		
	
	
		Training Details
	
	
		
	
	
		Training Dataset
	
	
	
		sentence-transformers/stsb
	
- Dataset: sentence-transformers/stsb at ab7a5ac
- Size: 5,749 training samples
- Columns: sentence1,sentence2, andscore
- Approximate statistics based on the first 1000 samples:
	
		
|  | sentence1 | sentence2 | score |  
| type | string | string | float |  
| details | min: 6 tokensmean: 10.0 tokensmax: 28 tokens
 | min: 5 tokensmean: 9.95 tokensmax: 25 tokens
 | min: 0.0mean: 0.54max: 1.0
 |  
 
 
- Samples:
	
		
| sentence1 | sentence2 | score |  
| A plane is taking off. | An air plane is taking off. | 1.0 |  
| A man is playing a large flute. | A man is playing a flute. | 0.76 |  
| A man is spreading shreded cheese on a pizza. | A man is spreading shredded cheese on an uncooked pizza. | 0.76 |  
 
 
- Loss: MatryoshkaLosswith these parameters:{
    "loss": "CoSENTLoss",
    "matryoshka_dims": [
        768,
        512,
        256,
        128,
        64,
        32
    ],
    "matryoshka_weights": [
        1,
        1,
        1,
        1,
        1,
        1
    ],
    "n_dims_per_step": -1
}
 
	
		
	
	
		Evaluation Dataset
	
	
	
		sentence-transformers/stsb
	
- Dataset: sentence-transformers/stsb at ab7a5ac
- Size: 1,500 evaluation samples
- Columns: sentence1,sentence2, andscore
- Approximate statistics based on the first 1000 samples:
	
		
|  | sentence1 | sentence2 | score |  
| type | string | string | float |  
| details | min: 5 tokensmean: 15.1 tokensmax: 45 tokens
 | min: 6 tokensmean: 15.11 tokensmax: 53 tokens
 | min: 0.0mean: 0.47max: 1.0
 |  
 
 
- Samples:
	
		
| sentence1 | sentence2 | score |  
| A man with a hard hat is dancing. | A man wearing a hard hat is dancing. | 1.0 |  
| A young child is riding a horse. | A child is riding a horse. | 0.95 |  
| A man is feeding a mouse to a snake. | The man is feeding a mouse to the snake. | 1.0 |  
 
 
- Loss: MatryoshkaLosswith these parameters:{
    "loss": "CoSENTLoss",
    "matryoshka_dims": [
        768,
        512,
        256,
        128,
        64,
        32
    ],
    "matryoshka_weights": [
        1,
        1,
        1,
        1,
        1,
        1
    ],
    "n_dims_per_step": -1
}
 
	
		
	
	
		Training Hyperparameters
	
	
		
	
	
		Non-Default Hyperparameters
	
- eval_strategy: steps
- per_device_train_batch_size: 16
- per_device_eval_batch_size: 16
- num_train_epochs: 4
- warmup_ratio: 0.1
- fp16: True
	
		
	
	
		All Hyperparameters
	
Click to expand
- overwrite_output_dir: False
- do_predict: False
- eval_strategy: steps
- prediction_loss_only: True
- per_device_train_batch_size: 16
- per_device_eval_batch_size: 16
- per_gpu_train_batch_size: None
- per_gpu_eval_batch_size: None
- gradient_accumulation_steps: 1
- eval_accumulation_steps: None
- learning_rate: 5e-05
- weight_decay: 0.0
- adam_beta1: 0.9
- adam_beta2: 0.999
- adam_epsilon: 1e-08
- max_grad_norm: 1.0
- num_train_epochs: 4
- max_steps: -1
- lr_scheduler_type: linear
- lr_scheduler_kwargs: {}
- warmup_ratio: 0.1
- warmup_steps: 0
- log_level: passive
- log_level_replica: warning
- log_on_each_node: True
- logging_nan_inf_filter: True
- save_safetensors: True
- save_on_each_node: False
- save_only_model: False
- restore_callback_states_from_checkpoint: False
- no_cuda: False
- use_cpu: False
- use_mps_device: False
- seed: 42
- data_seed: None
- jit_mode_eval: False
- use_ipex: False
- bf16: False
- fp16: True
- fp16_opt_level: O1
- half_precision_backend: auto
- bf16_full_eval: False
- fp16_full_eval: False
- tf32: None
- local_rank: 0
- ddp_backend: None
- tpu_num_cores: None
- tpu_metrics_debug: False
- debug: []
- dataloader_drop_last: False
- dataloader_num_workers: 0
- dataloader_prefetch_factor: None
- past_index: -1
- disable_tqdm: False
- remove_unused_columns: True
- label_names: None
- load_best_model_at_end: False
- ignore_data_skip: False
- fsdp: []
- fsdp_min_num_params: 0
- fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- fsdp_transformer_layer_cls_to_wrap: None
- accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- deepspeed: None
- label_smoothing_factor: 0.0
- optim: adamw_torch
- optim_args: None
- adafactor: False
- group_by_length: False
- length_column_name: length
- ddp_find_unused_parameters: None
- ddp_bucket_cap_mb: None
- ddp_broadcast_buffers: False
- dataloader_pin_memory: True
- dataloader_persistent_workers: False
- skip_memory_metrics: True
- use_legacy_prediction_loop: False
- push_to_hub: False
- resume_from_checkpoint: None
- hub_model_id: None
- hub_strategy: every_save
- hub_private_repo: False
- hub_always_push: False
- gradient_checkpointing: False
- gradient_checkpointing_kwargs: None
- include_inputs_for_metrics: False
- eval_do_concat_batches: True
- fp16_backend: auto
- push_to_hub_model_id: None
- push_to_hub_organization: None
- mp_parameters:
- auto_find_batch_size: False
- full_determinism: False
- torchdynamo: None
- ray_scope: last
- ddp_timeout: 1800
- torch_compile: False
- torch_compile_backend: None
- torch_compile_mode: None
- dispatch_batches: None
- split_batches: None
- include_tokens_per_second: False
- include_num_input_tokens_seen: False
- neftune_noise_alpha: None
- optim_target_modules: None
- batch_eval_metrics: False
- batch_sampler: batch_sampler
- multi_dataset_batch_sampler: proportional
	
		
	
	
		Training Logs
	
	
		
| Epoch | Step | Training Loss | loss | sts-dev-128_spearman_cosine | sts-dev-256_spearman_cosine | sts-dev-32_spearman_cosine | sts-dev-512_spearman_cosine | sts-dev-64_spearman_cosine | sts-dev-768_spearman_cosine | sts-test-128_spearman_cosine | sts-test-256_spearman_cosine | sts-test-32_spearman_cosine | sts-test-512_spearman_cosine | sts-test-64_spearman_cosine | sts-test-768_spearman_cosine | 
		
| 0.2778 | 100 | 28.2763 | 26.3514 | 0.8250 | 0.8306 | 0.7893 | 0.8308 | 0.8094 | 0.8314 | - | - | - | - | - | - | 
| 0.5556 | 200 | 26.3731 | 26.0000 | 0.8373 | 0.8412 | 0.8026 | 0.8463 | 0.8267 | 0.8467 | - | - | - | - | - | - | 
| 0.8333 | 300 | 26.0243 | 26.5062 | 0.8434 | 0.8495 | 0.8073 | 0.8534 | 0.8297 | 0.8556 | - | - | - | - | - | - | 
| 1.1111 | 400 | 25.3448 | 28.1742 | 0.8496 | 0.8544 | 0.8157 | 0.8593 | 0.8361 | 0.8611 | - | - | - | - | - | - | 
| 1.3889 | 500 | 24.7922 | 27.0245 | 0.8488 | 0.8529 | 0.8149 | 0.8574 | 0.8352 | 0.8589 | - | - | - | - | - | - | 
| 1.6667 | 600 | 24.7596 | 26.9771 | 0.8516 | 0.8558 | 0.8199 | 0.8601 | 0.8389 | 0.8619 | - | - | - | - | - | - | 
| 1.9444 | 700 | 24.7165 | 26.2923 | 0.8602 | 0.8634 | 0.8277 | 0.8665 | 0.8476 | 0.8681 | - | - | - | - | - | - | 
| 2.2222 | 800 | 23.7934 | 27.9207 | 0.8570 | 0.8608 | 0.8263 | 0.8640 | 0.8460 | 0.8656 | - | - | - | - | - | - | 
| 2.5 | 900 | 23.4618 | 27.5855 | 0.8583 | 0.8618 | 0.8257 | 0.8657 | 0.8456 | 0.8675 | - | - | - | - | - | - | 
| 2.7778 | 1000 | 23.1831 | 29.9791 | 0.8533 | 0.8557 | 0.8232 | 0.8599 | 0.8411 | 0.8612 | - | - | - | - | - | - | 
| 3.0556 | 1100 | 23.1935 | 28.7866 | 0.8612 | 0.8636 | 0.8329 | 0.8677 | 0.8504 | 0.8689 | - | - | - | - | - | - | 
| 3.3333 | 1200 | 22.1447 | 30.0641 | 0.8597 | 0.8630 | 0.8285 | 0.8661 | 0.8488 | 0.8676 | - | - | - | - | - | - | 
| 3.6111 | 1300 | 21.9271 | 30.9347 | 0.8613 | 0.8648 | 0.8309 | 0.8679 | 0.8509 | 0.8697 | - | - | - | - | - | - | 
| 3.8889 | 1400 | 21.973 | 30.9209 | 0.8626 | 0.8656 | 0.8328 | 0.8690 | 0.8523 | 0.8705 | - | - | - | - | - | - | 
| 4.0 | 1440 | - | - | - | - | - | - | - | - | 0.8297 | 0.8344 | 0.8126 | 0.8418 | 0.8221 | 0.8420 | 
	
 
	
		
	
	
		Framework Versions
	
- Python: 3.10.12
- Sentence Transformers: 3.0.0
- Transformers: 4.41.1
- PyTorch: 2.3.0+cu121
- Accelerate: 0.30.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
	
		
	
	
		Citation
	
	
		
	
	
		BibTeX
	
	
		
	
	
		Sentence Transformers
	
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
	
		
	
	
		MatryoshkaLoss
	
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
	
		
	
	
		CoSENTLoss
	
@online{kexuefm-8847,
    title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
    author={Su Jianlin},
    year={2022},
    month={Jan},
    url={https://kexue.fm/archives/8847},
}