mrm8488's picture
Add new SentenceTransformer model.
76de2ac verified
metadata
language:
  - en
library_name: sentence-transformers
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - dataset_size:1K<n<10K
  - loss:MatryoshkaLoss
  - loss:CoSENTLoss
base_model: distilbert/distilbert-base-uncased
metrics:
  - pearson_cosine
  - spearman_cosine
  - pearson_manhattan
  - spearman_manhattan
  - pearson_euclidean
  - spearman_euclidean
  - pearson_dot
  - spearman_dot
  - pearson_max
  - spearman_max
widget:
  - source_sentence: A plane in the sky.
    sentences:
      - Two airplanes in the sky.
      - Two women are sitting in a cafe.
      - Turkey's PM Warns Against Protests
  - source_sentence: A man jumping rope
    sentences:
      - A man climbs a rope.
      - Blast on Indian train kills one
      - Israel expands subsidies to settlements
  - source_sentence: A baby is laughing.
    sentences:
      - The baby laughed in his car seat.
      - The girl is playing the guitar.
      - Bangladesh Islamist leader executed
  - source_sentence: A plane is landing.
    sentences:
      - A animated airplane is landing.
      - A man plays an acoustic guitar.
      - Obama urges no new sanctions on Iran
  - source_sentence: A boy is vacuuming.
    sentences:
      - A little boy is vacuuming the floor.
      - Suicide bomber strikes in Syria
      - 32 die in Bangladesh protest
pipeline_tag: sentence-similarity
model-index:
  - name: SentenceTransformer based on distilbert/distilbert-base-uncased
    results:
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts dev 768
          type: sts-dev-768
        metrics:
          - type: pearson_cosine
            value: 0.8580007118837358
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.871820299536176
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.8579597824452743
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.8611676230134329
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.8584693242993966
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.8617539394714434
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.6259192943899555
            name: Pearson Dot
          - type: spearman_dot
            value: 0.6245849846631494
            name: Spearman Dot
          - type: pearson_max
            value: 0.8584693242993966
            name: Pearson Max
          - type: spearman_max
            value: 0.871820299536176
            name: Spearman Max
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts dev 512
          type: sts-dev-512
        metrics:
          - type: pearson_cosine
            value: 0.855328467168775
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.8708546925464771
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.8571701704416792
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.8609603329646862
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.8577665956034857
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.8611867637483455
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.6301839390729895
            name: Pearson Dot
          - type: spearman_dot
            value: 0.6312551259723912
            name: Spearman Dot
          - type: pearson_max
            value: 0.8577665956034857
            name: Pearson Max
          - type: spearman_max
            value: 0.8708546925464771
            name: Spearman Max
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts dev 256
          type: sts-dev-256
        metrics:
          - type: pearson_cosine
            value: 0.8534192140857989
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.8684742287834586
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.8550376893582918
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.8595873940460774
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.855243500036296
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.8595389790366662
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.5692600956239565
            name: Pearson Dot
          - type: spearman_dot
            value: 0.5631798664802073
            name: Spearman Dot
          - type: pearson_max
            value: 0.855243500036296
            name: Pearson Max
          - type: spearman_max
            value: 0.8684742287834586
            name: Spearman Max
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts dev 128
          type: sts-dev-128
        metrics:
          - type: pearson_cosine
            value: 0.8437376978373121
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.8634082420330794
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.8454596574177755
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.85188111210432
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.8479887421152008
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.8537259447832961
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.5513203019384504
            name: Pearson Dot
          - type: spearman_dot
            value: 0.5500687993669725
            name: Spearman Dot
          - type: pearson_max
            value: 0.8479887421152008
            name: Pearson Max
          - type: spearman_max
            value: 0.8634082420330794
            name: Spearman Max
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts dev 64
          type: sts-dev-64
        metrics:
          - type: pearson_cosine
            value: 0.8272184719216283
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.8541030591238341
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.8307462071466211
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.8406982840852595
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.8342382781891662
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.8427338906559259
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.494520518114596
            name: Pearson Dot
          - type: spearman_dot
            value: 0.49218360841938574
            name: Spearman Dot
          - type: pearson_max
            value: 0.8342382781891662
            name: Pearson Max
          - type: spearman_max
            value: 0.8541030591238341
            name: Spearman Max
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts dev 32
          type: sts-dev-32
        metrics:
          - type: pearson_cosine
            value: 0.795037446434113
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.8337679875014413
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.8120635303724889
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.8249212312847407
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.8157607542813738
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.8262833782950811
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.44442829473227297
            name: Pearson Dot
          - type: spearman_dot
            value: 0.4333209339301445
            name: Spearman Dot
          - type: pearson_max
            value: 0.8157607542813738
            name: Pearson Max
          - type: spearman_max
            value: 0.8337679875014413
            name: Spearman Max
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts dev 16
          type: sts-dev-16
        metrics:
          - type: pearson_cosine
            value: 0.7402920507586056
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.7953398971914366
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.7661819958789702
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.7806209887724272
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.7753319460863385
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.788448392758016
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.2914268467178465
            name: Pearson Dot
          - type: spearman_dot
            value: 0.2731801701260987
            name: Spearman Dot
          - type: pearson_max
            value: 0.7753319460863385
            name: Pearson Max
          - type: spearman_max
            value: 0.7953398971914366
            name: Spearman Max
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts test 768
          type: sts-test-768
        metrics:
          - type: pearson_cosine
            value: 0.8355126555886146
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.8474343771835785
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.8477769261693708
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.8440487632905719
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.8482353907773731
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.8443357402859023
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.575155372226532
            name: Pearson Dot
          - type: spearman_dot
            value: 0.5645826036063977
            name: Spearman Dot
          - type: pearson_max
            value: 0.8482353907773731
            name: Pearson Max
          - type: spearman_max
            value: 0.8474343771835785
            name: Spearman Max
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts test 512
          type: sts-test-512
        metrics:
          - type: pearson_cosine
            value: 0.8345636179092932
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.847969741682177
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.8471375569231226
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.8432315278152519
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.8475673449165414
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.8438566473590643
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.5890647647307824
            name: Pearson Dot
          - type: spearman_dot
            value: 0.579599198660516
            name: Spearman Dot
          - type: pearson_max
            value: 0.8475673449165414
            name: Pearson Max
          - type: spearman_max
            value: 0.847969741682177
            name: Spearman Max
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts test 256
          type: sts-test-256
        metrics:
          - type: pearson_cosine
            value: 0.8264268046184008
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.8414784020776254
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.8414377075419083
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.8388634084489552
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.8423455168447094
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.8400797815114284
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.5229860109488433
            name: Pearson Dot
          - type: spearman_dot
            value: 0.5099269577284724
            name: Spearman Dot
          - type: pearson_max
            value: 0.8423455168447094
            name: Pearson Max
          - type: spearman_max
            value: 0.8414784020776254
            name: Spearman Max
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts test 128
          type: sts-test-128
        metrics:
          - type: pearson_cosine
            value: 0.8189773000477083
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.837625236881656
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.8349887918183595
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.8336489133404312
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.8365085956274743
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.8347627903646608
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.49799738412782535
            name: Pearson Dot
          - type: spearman_dot
            value: 0.48970409354637134
            name: Spearman Dot
          - type: pearson_max
            value: 0.8365085956274743
            name: Pearson Max
          - type: spearman_max
            value: 0.837625236881656
            name: Spearman Max
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts test 64
          type: sts-test-64
        metrics:
          - type: pearson_cosine
            value: 0.8062259318483077
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.8292433269349447
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.8236527010227455
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.8243846152203906
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.8273451113428331
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.8269777736926925
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.4318247709105578
            name: Pearson Dot
          - type: spearman_dot
            value: 0.4325030690630689
            name: Spearman Dot
          - type: pearson_max
            value: 0.8273451113428331
            name: Pearson Max
          - type: spearman_max
            value: 0.8292433269349447
            name: Spearman Max
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts test 32
          type: sts-test-32
        metrics:
          - type: pearson_cosine
            value: 0.7769698706658718
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.813231133965274
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.8040659399939705
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.8083901845044422
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.8089540323890078
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.8126434700070444
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.3721968691924307
            name: Pearson Dot
          - type: spearman_dot
            value: 0.36359211044547146
            name: Spearman Dot
          - type: pearson_max
            value: 0.8089540323890078
            name: Pearson Max
          - type: spearman_max
            value: 0.813231133965274
            name: Spearman Max
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts test 16
          type: sts-test-16
        metrics:
          - type: pearson_cosine
            value: 0.7350580362911046
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.7811480253828886
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.7686995805327835
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.7767016091591996
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.7732639293607727
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.7798783495241994
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.25479413300114095
            name: Pearson Dot
          - type: spearman_dot
            value: 0.24117846955339683
            name: Spearman Dot
          - type: pearson_max
            value: 0.7732639293607727
            name: Pearson Max
          - type: spearman_max
            value: 0.7811480253828886
            name: Spearman Max

SentenceTransformer based on distilbert/distilbert-base-uncased

This is a sentence-transformers model finetuned from distilbert/distilbert-base-uncased on the sentence-transformers/stsb dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("mrm8488/distilbert-base-matryoshka-sts-v2")
# Run inference
sentences = [
    'A boy is vacuuming.',
    'A little boy is vacuuming the floor.',
    'Suicide bomber strikes in Syria',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.858
spearman_cosine 0.8718
pearson_manhattan 0.858
spearman_manhattan 0.8612
pearson_euclidean 0.8585
spearman_euclidean 0.8618
pearson_dot 0.6259
spearman_dot 0.6246
pearson_max 0.8585
spearman_max 0.8718

Semantic Similarity

Metric Value
pearson_cosine 0.8553
spearman_cosine 0.8709
pearson_manhattan 0.8572
spearman_manhattan 0.861
pearson_euclidean 0.8578
spearman_euclidean 0.8612
pearson_dot 0.6302
spearman_dot 0.6313
pearson_max 0.8578
spearman_max 0.8709

Semantic Similarity

Metric Value
pearson_cosine 0.8534
spearman_cosine 0.8685
pearson_manhattan 0.855
spearman_manhattan 0.8596
pearson_euclidean 0.8552
spearman_euclidean 0.8595
pearson_dot 0.5693
spearman_dot 0.5632
pearson_max 0.8552
spearman_max 0.8685

Semantic Similarity

Metric Value
pearson_cosine 0.8437
spearman_cosine 0.8634
pearson_manhattan 0.8455
spearman_manhattan 0.8519
pearson_euclidean 0.848
spearman_euclidean 0.8537
pearson_dot 0.5513
spearman_dot 0.5501
pearson_max 0.848
spearman_max 0.8634

Semantic Similarity

Metric Value
pearson_cosine 0.8272
spearman_cosine 0.8541
pearson_manhattan 0.8307
spearman_manhattan 0.8407
pearson_euclidean 0.8342
spearman_euclidean 0.8427
pearson_dot 0.4945
spearman_dot 0.4922
pearson_max 0.8342
spearman_max 0.8541

Semantic Similarity

Metric Value
pearson_cosine 0.795
spearman_cosine 0.8338
pearson_manhattan 0.8121
spearman_manhattan 0.8249
pearson_euclidean 0.8158
spearman_euclidean 0.8263
pearson_dot 0.4444
spearman_dot 0.4333
pearson_max 0.8158
spearman_max 0.8338

Semantic Similarity

Metric Value
pearson_cosine 0.7403
spearman_cosine 0.7953
pearson_manhattan 0.7662
spearman_manhattan 0.7806
pearson_euclidean 0.7753
spearman_euclidean 0.7884
pearson_dot 0.2914
spearman_dot 0.2732
pearson_max 0.7753
spearman_max 0.7953

Semantic Similarity

Metric Value
pearson_cosine 0.8355
spearman_cosine 0.8474
pearson_manhattan 0.8478
spearman_manhattan 0.844
pearson_euclidean 0.8482
spearman_euclidean 0.8443
pearson_dot 0.5752
spearman_dot 0.5646
pearson_max 0.8482
spearman_max 0.8474

Semantic Similarity

Metric Value
pearson_cosine 0.8346
spearman_cosine 0.848
pearson_manhattan 0.8471
spearman_manhattan 0.8432
pearson_euclidean 0.8476
spearman_euclidean 0.8439
pearson_dot 0.5891
spearman_dot 0.5796
pearson_max 0.8476
spearman_max 0.848

Semantic Similarity

Metric Value
pearson_cosine 0.8264
spearman_cosine 0.8415
pearson_manhattan 0.8414
spearman_manhattan 0.8389
pearson_euclidean 0.8423
spearman_euclidean 0.8401
pearson_dot 0.523
spearman_dot 0.5099
pearson_max 0.8423
spearman_max 0.8415

Semantic Similarity

Metric Value
pearson_cosine 0.819
spearman_cosine 0.8376
pearson_manhattan 0.835
spearman_manhattan 0.8336
pearson_euclidean 0.8365
spearman_euclidean 0.8348
pearson_dot 0.498
spearman_dot 0.4897
pearson_max 0.8365
spearman_max 0.8376

Semantic Similarity

Metric Value
pearson_cosine 0.8062
spearman_cosine 0.8292
pearson_manhattan 0.8237
spearman_manhattan 0.8244
pearson_euclidean 0.8273
spearman_euclidean 0.827
pearson_dot 0.4318
spearman_dot 0.4325
pearson_max 0.8273
spearman_max 0.8292

Semantic Similarity

Metric Value
pearson_cosine 0.777
spearman_cosine 0.8132
pearson_manhattan 0.8041
spearman_manhattan 0.8084
pearson_euclidean 0.809
spearman_euclidean 0.8126
pearson_dot 0.3722
spearman_dot 0.3636
pearson_max 0.809
spearman_max 0.8132

Semantic Similarity

Metric Value
pearson_cosine 0.7351
spearman_cosine 0.7811
pearson_manhattan 0.7687
spearman_manhattan 0.7767
pearson_euclidean 0.7733
spearman_euclidean 0.7799
pearson_dot 0.2548
spearman_dot 0.2412
pearson_max 0.7733
spearman_max 0.7811

Training Details

Training Dataset

sentence-transformers/stsb

  • Dataset: sentence-transformers/stsb at ab7a5ac
  • Size: 5,749 training samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 6 tokens
    • mean: 10.0 tokens
    • max: 28 tokens
    • min: 5 tokens
    • mean: 9.95 tokens
    • max: 25 tokens
    • min: 0.0
    • mean: 0.54
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    A plane is taking off. An air plane is taking off. 1.0
    A man is playing a large flute. A man is playing a flute. 0.76
    A man is spreading shreded cheese on a pizza. A man is spreading shredded cheese on an uncooked pizza. 0.76
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "CoSENTLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64,
            32,
            16
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Evaluation Dataset

sentence-transformers/stsb

  • Dataset: sentence-transformers/stsb at ab7a5ac
  • Size: 1,500 evaluation samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 5 tokens
    • mean: 15.1 tokens
    • max: 45 tokens
    • min: 6 tokens
    • mean: 15.11 tokens
    • max: 53 tokens
    • min: 0.0
    • mean: 0.47
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    A man with a hard hat is dancing. A man wearing a hard hat is dancing. 1.0
    A young child is riding a horse. A child is riding a horse. 0.95
    A man is feeding a mouse to a snake. The man is feeding a mouse to the snake. 1.0
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "CoSENTLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64,
            32,
            16
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • num_train_epochs: 4
  • warmup_ratio: 0.1
  • bf16: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss loss sts-dev-128_spearman_cosine sts-dev-16_spearman_cosine sts-dev-256_spearman_cosine sts-dev-32_spearman_cosine sts-dev-512_spearman_cosine sts-dev-64_spearman_cosine sts-dev-768_spearman_cosine sts-test-128_spearman_cosine sts-test-16_spearman_cosine sts-test-256_spearman_cosine sts-test-32_spearman_cosine sts-test-512_spearman_cosine sts-test-64_spearman_cosine sts-test-768_spearman_cosine
2.2222 100 60.4066 60.8718 0.8634 0.7953 0.8685 0.8338 0.8709 0.8541 0.8718 - - - - - - -
4.0 180 - - - - - - - - - 0.8376 0.7811 0.8415 0.8132 0.8480 0.8292 0.8474

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.0.0
  • Transformers: 4.41.1
  • PyTorch: 2.3.0+cu121
  • Accelerate: 0.30.1
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

CoSENTLoss

@online{kexuefm-8847,
    title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
    author={Su Jianlin},
    year={2022},
    month={Jan},
    url={https://kexue.fm/archives/8847},
}