julien-c's picture
julien-c HF staff
Migrate model card from transformers-repo
3d19163
|
raw
history blame
1.78 kB
---
language: multilingual
thumbnail:
---
# DISTILBERT 🌎 + Typo Detection βœβŒβœβœ”
[distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) fine-tuned on [GitHub Typo Corpus](https://github.com/mhagiwara/github-typo-corpus) for **typo detection** (using *NER* style)
## Details of the downstream task (Typo detection as NER)
- Dataset: [GitHub Typo Corpus](https://github.com/mhagiwara/github-typo-corpus) πŸ“š for 15 languages
- [Fine-tune script on NER dataset provided by Huggingface](https://github.com/huggingface/transformers/blob/master/examples/token-classification/run_ner_old.py) πŸ‹οΈβ€β™‚οΈ
## Metrics on test set πŸ“‹
| Metric | # score |
| :-------: | :-------: |
| F1 | **93.51** |
| Precision | **96.08** |
| Recall | **91.06** |
## Model in action πŸ”¨
Fast usage with **pipelines** πŸ§ͺ
```python
from transformers import pipeline
typo_checker = pipeline(
"ner",
model="mrm8488/distilbert-base-multi-cased-finetuned-typo-detection",
tokenizer="mrm8488/distilbert-base-multi-cased-finetuned-typo-detection"
)
result = typo_checker("Adddd validation midelware")
result[1:-1]
# Output:
[{'entity': 'ok', 'score': 0.7128152847290039, 'word': 'add'},
{'entity': 'typo', 'score': 0.5388424396514893, 'word': '##dd'},
{'entity': 'ok', 'score': 0.94792640209198, 'word': 'validation'},
{'entity': 'typo', 'score': 0.5839331746101379, 'word': 'mid'},
{'entity': 'ok', 'score': 0.5195121765136719, 'word': '##el'},
{'entity': 'ok', 'score': 0.7222476601600647, 'word': '##ware'}]
```
It worksπŸŽ‰! We typed wrong ```Add and middleware```
> Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488)
> Made with <span style="color: #e25555;">&hearts;</span> in Spain