|
--- |
|
language: multilingual |
|
thumbnail: |
|
--- |
|
|
|
# DISTILBERT π + Typo Detection ββββ |
|
|
|
[distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) fine-tuned on [GitHub Typo Corpus](https://github.com/mhagiwara/github-typo-corpus) for **typo detection** (using *NER* style) |
|
|
|
## Details of the downstream task (Typo detection as NER) |
|
|
|
- Dataset: [GitHub Typo Corpus](https://github.com/mhagiwara/github-typo-corpus) π for 15 languages |
|
|
|
- [Fine-tune script on NER dataset provided by Huggingface](https://github.com/huggingface/transformers/blob/master/examples/token-classification/run_ner_old.py) ποΈββοΈ |
|
|
|
## Metrics on test set π |
|
|
|
| Metric | # score | |
|
| :-------: | :-------: | |
|
| F1 | **93.51** | |
|
| Precision | **96.08** | |
|
| Recall | **91.06** | |
|
|
|
## Model in action π¨ |
|
|
|
Fast usage with **pipelines** π§ͺ |
|
|
|
```python |
|
from transformers import pipeline |
|
|
|
typo_checker = pipeline( |
|
"ner", |
|
model="mrm8488/distilbert-base-multi-cased-finetuned-typo-detection", |
|
tokenizer="mrm8488/distilbert-base-multi-cased-finetuned-typo-detection" |
|
) |
|
|
|
result = typo_checker("Adddd validation midelware") |
|
result[1:-1] |
|
|
|
# Output: |
|
[{'entity': 'ok', 'score': 0.7128152847290039, 'word': 'add'}, |
|
{'entity': 'typo', 'score': 0.5388424396514893, 'word': '##dd'}, |
|
{'entity': 'ok', 'score': 0.94792640209198, 'word': 'validation'}, |
|
{'entity': 'typo', 'score': 0.5839331746101379, 'word': 'mid'}, |
|
{'entity': 'ok', 'score': 0.5195121765136719, 'word': '##el'}, |
|
{'entity': 'ok', 'score': 0.7222476601600647, 'word': '##ware'}] |
|
``` |
|
It worksπ! We typed wrong ```Add and middleware``` |
|
|
|
|
|
> Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) |
|
|
|
> Made with <span style="color: #e25555;">♥</span> in Spain |
|
|