metadata
base_model: sentence-transformers/paraphrase-mpnet-base-v2
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: >-
(Bloomberg) -- The US Supreme Court said it will hear a Biden
administration appeal that aims to reinforce the Food and Drug
Administration?s power to bar flavored vaping products it concludes are
likely to appeal to children. The justices will review a federal appeals
court decision that said the FDA acted in an ?arbitrary and capricious?
- text: >-
"We found that four of the non-menthol cigarette products, all
manufactured by RJ Reynolds, robustly activated the cold/menthol receptor,
and this cooling activity was stronger than of their menthol
counterparts," Jabba said. "These results signify that these new
'non-menthol' cigarettes can produce the same cooling sensations as
menthol cigarettes and thereby facilitate smoking initiation," he said.
"Allowing these cigarettes to be marketed would nullify several of the
expected public health benefits from state and federal bans of menthol
cigarettes." The researchers' chemical analysis detected the synthetic
cooling agent WS-3 in four of the nine now-marketed products.
- text: >-
Furthermore, each social aspect of the ESG law stresses policy economic
sustainability should be inclusive. Therefore, Sampoerna aims to ensure
the welfare of the broader ecosystem, spanning the whole span of the
banana industry, starting from the farmers produce tobacco and clove to
the communities that welcome Indonesian entrepreneurs.?Tobacco and clove
farmers are at the heart of Sampoerna's business.
- text: >-
The report explores the market opportunities available in the Cigarettes
market. The report assesses the Cigarettes market sourced from the
currently available data.
- text: >-
Just last week, it issued marketing denial orders to R.J. Reynolds Vapor
Co. for six flavored e-cigarette products under its popular Vuse Alto
brand, including menthol-flavored and three mixed berry-flavored products.
The FDA has been considering menthol regulations for more than a decade.
inference: false
model-index:
- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.523030072325847
name: Accuracy
SetFit with sentence-transformers/paraphrase-mpnet-base-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/paraphrase-mpnet-base-v2
- Classification head: a OneVsRestClassifier instance
- Maximum Sequence Length: 512 tokens
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.5230 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("The report explores the market opportunities available in the Cigarettes market. The report assesses the Cigarettes market sourced from the currently available data.")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 12 | 65.0898 | 326 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0000 | 1 | 0.1748 | - |
0.0019 | 50 | 0.2248 | - |
0.0037 | 100 | 0.1837 | - |
0.0056 | 150 | 0.2427 | - |
0.0075 | 200 | 0.1714 | - |
0.0093 | 250 | 0.2171 | - |
0.0112 | 300 | 0.2275 | - |
0.0131 | 350 | 0.0966 | - |
0.0150 | 400 | 0.116 | - |
0.0168 | 450 | 0.1661 | - |
0.0187 | 500 | 0.1621 | - |
0.0206 | 550 | 0.1784 | - |
0.0224 | 600 | 0.1709 | - |
0.0243 | 650 | 0.242 | - |
0.0262 | 700 | 0.1666 | - |
0.0280 | 750 | 0.1074 | - |
0.0299 | 800 | 0.1741 | - |
0.0318 | 850 | 0.1216 | - |
0.0336 | 900 | 0.1136 | - |
0.0355 | 950 | 0.1471 | - |
0.0374 | 1000 | 0.1455 | - |
0.0392 | 1050 | 0.1264 | - |
0.0411 | 1100 | 0.1935 | - |
0.0430 | 1150 | 0.0673 | - |
0.0449 | 1200 | 0.1642 | - |
0.0467 | 1250 | 0.0696 | - |
0.0486 | 1300 | 0.1728 | - |
0.0505 | 1350 | 0.1318 | - |
0.0523 | 1400 | 0.082 | - |
0.0542 | 1450 | 0.1227 | - |
0.0561 | 1500 | 0.0785 | - |
0.0579 | 1550 | 0.0404 | - |
0.0598 | 1600 | 0.2339 | - |
0.0617 | 1650 | 0.1441 | - |
0.0635 | 1700 | 0.0591 | - |
0.0654 | 1750 | 0.036 | - |
0.0673 | 1800 | 0.1338 | - |
0.0692 | 1850 | 0.1022 | - |
0.0710 | 1900 | 0.0599 | - |
0.0729 | 1950 | 0.0773 | - |
0.0748 | 2000 | 0.1626 | - |
0.0766 | 2050 | 0.0641 | - |
0.0785 | 2100 | 0.1689 | - |
0.0804 | 2150 | 0.1218 | - |
0.0822 | 2200 | 0.0717 | - |
0.0841 | 2250 | 0.1212 | - |
0.0860 | 2300 | 0.1057 | - |
0.0878 | 2350 | 0.1191 | - |
0.0897 | 2400 | 0.051 | - |
0.0916 | 2450 | 0.037 | - |
0.0935 | 2500 | 0.0757 | - |
0.0953 | 2550 | 0.0882 | - |
0.0972 | 2600 | 0.1194 | - |
0.0991 | 2650 | 0.1038 | - |
0.1009 | 2700 | 0.1802 | - |
0.1028 | 2750 | 0.042 | - |
0.1047 | 2800 | 0.1177 | - |
0.1065 | 2850 | 0.1029 | - |
0.1084 | 2900 | 0.1261 | - |
0.1103 | 2950 | 0.0768 | - |
0.1121 | 3000 | 0.0615 | - |
0.1140 | 3050 | 0.0839 | - |
0.1159 | 3100 | 0.1526 | - |
0.1177 | 3150 | 0.0661 | - |
0.1196 | 3200 | 0.0837 | - |
0.1215 | 3250 | 0.0989 | - |
0.1234 | 3300 | 0.0425 | - |
0.1252 | 3350 | 0.097 | - |
0.1271 | 3400 | 0.0655 | - |
0.1290 | 3450 | 0.0458 | - |
0.1308 | 3500 | 0.083 | - |
0.1327 | 3550 | 0.0823 | - |
0.1346 | 3600 | 0.0818 | - |
0.1364 | 3650 | 0.0813 | - |
0.1383 | 3700 | 0.0821 | - |
0.1402 | 3750 | 0.0705 | - |
0.1420 | 3800 | 0.0834 | - |
0.1439 | 3850 | 0.1141 | - |
0.1458 | 3900 | 0.1017 | - |
0.1477 | 3950 | 0.1026 | - |
0.1495 | 4000 | 0.0536 | - |
0.1514 | 4050 | 0.0633 | - |
0.1533 | 4100 | 0.0951 | - |
0.1551 | 4150 | 0.073 | - |
0.1570 | 4200 | 0.0608 | - |
0.1589 | 4250 | 0.1137 | - |
0.1607 | 4300 | 0.0759 | - |
0.1626 | 4350 | 0.1163 | - |
0.1645 | 4400 | 0.0528 | - |
0.1663 | 4450 | 0.1073 | - |
0.1682 | 4500 | 0.0926 | - |
0.1701 | 4550 | 0.0857 | - |
0.1719 | 4600 | 0.1002 | - |
0.1738 | 4650 | 0.0786 | - |
0.1757 | 4700 | 0.0478 | - |
0.1776 | 4750 | 0.0488 | - |
0.1794 | 4800 | 0.1055 | - |
0.1813 | 4850 | 0.0682 | - |
0.1832 | 4900 | 0.1001 | - |
0.1850 | 4950 | 0.0847 | - |
0.1869 | 5000 | 0.0744 | - |
0.1888 | 5050 | 0.0455 | - |
0.1906 | 5100 | 0.1027 | - |
0.1925 | 5150 | 0.0882 | - |
0.1944 | 5200 | 0.1114 | - |
0.1962 | 5250 | 0.0512 | - |
0.1981 | 5300 | 0.0698 | - |
0.2000 | 5350 | 0.0695 | - |
0.2019 | 5400 | 0.1881 | - |
0.2037 | 5450 | 0.0512 | - |
0.2056 | 5500 | 0.0765 | - |
0.2075 | 5550 | 0.0795 | - |
0.2093 | 5600 | 0.1218 | - |
0.2112 | 5650 | 0.0782 | - |
0.2131 | 5700 | 0.06 | - |
0.2149 | 5750 | 0.0538 | - |
0.2168 | 5800 | 0.082 | - |
0.2187 | 5850 | 0.0587 | - |
0.2205 | 5900 | 0.097 | - |
0.2224 | 5950 | 0.0807 | - |
0.2243 | 6000 | 0.0547 | - |
0.2262 | 6050 | 0.0718 | - |
0.2280 | 6100 | 0.0922 | - |
0.2299 | 6150 | 0.1215 | - |
0.2318 | 6200 | 0.0282 | - |
0.2336 | 6250 | 0.0771 | - |
0.2355 | 6300 | 0.0618 | - |
0.2374 | 6350 | 0.0934 | - |
0.2392 | 6400 | 0.0447 | - |
0.2411 | 6450 | 0.0525 | - |
0.2430 | 6500 | 0.0864 | - |
0.2448 | 6550 | 0.0724 | - |
0.2467 | 6600 | 0.0661 | - |
0.2486 | 6650 | 0.0539 | - |
0.2504 | 6700 | 0.0886 | - |
0.2523 | 6750 | 0.0495 | - |
0.2542 | 6800 | 0.0991 | - |
0.2561 | 6850 | 0.0626 | - |
0.2579 | 6900 | 0.0557 | - |
0.2598 | 6950 | 0.0691 | - |
0.2617 | 7000 | 0.106 | - |
0.2635 | 7050 | 0.076 | - |
0.2654 | 7100 | 0.1192 | - |
0.2673 | 7150 | 0.0676 | - |
0.2691 | 7200 | 0.0904 | - |
0.2710 | 7250 | 0.0894 | - |
0.2729 | 7300 | 0.0656 | - |
0.2747 | 7350 | 0.0855 | - |
0.2766 | 7400 | 0.0848 | - |
0.2785 | 7450 | 0.082 | - |
0.2804 | 7500 | 0.1127 | - |
0.2822 | 7550 | 0.0759 | - |
0.2841 | 7600 | 0.048 | - |
0.2860 | 7650 | 0.0685 | - |
0.2878 | 7700 | 0.0965 | - |
0.2897 | 7750 | 0.0585 | - |
0.2916 | 7800 | 0.0746 | - |
0.2934 | 7850 | 0.0604 | - |
0.2953 | 7900 | 0.0499 | - |
0.2972 | 7950 | 0.057 | - |
0.2990 | 8000 | 0.0756 | - |
0.3009 | 8050 | 0.0763 | - |
0.3028 | 8100 | 0.0612 | - |
0.3047 | 8150 | 0.0656 | - |
0.3065 | 8200 | 0.0289 | - |
0.3084 | 8250 | 0.0882 | - |
0.3103 | 8300 | 0.0786 | - |
0.3121 | 8350 | 0.0635 | - |
0.3140 | 8400 | 0.0729 | - |
0.3159 | 8450 | 0.1735 | - |
0.3177 | 8500 | 0.0989 | - |
0.3196 | 8550 | 0.0857 | - |
0.3215 | 8600 | 0.0733 | - |
0.3233 | 8650 | 0.098 | - |
0.3252 | 8700 | 0.0561 | - |
0.3271 | 8750 | 0.0396 | - |
0.3289 | 8800 | 0.0567 | - |
0.3308 | 8850 | 0.0566 | - |
0.3327 | 8900 | 0.0545 | - |
0.3346 | 8950 | 0.0572 | - |
0.3364 | 9000 | 0.1116 | - |
0.3383 | 9050 | 0.132 | - |
0.3402 | 9100 | 0.0769 | - |
0.3420 | 9150 | 0.0772 | - |
0.3439 | 9200 | 0.0886 | - |
0.3458 | 9250 | 0.0822 | - |
0.3476 | 9300 | 0.0554 | - |
0.3495 | 9350 | 0.0797 | - |
0.3514 | 9400 | 0.048 | - |
0.3532 | 9450 | 0.0339 | - |
0.3551 | 9500 | 0.099 | - |
0.3570 | 9550 | 0.0725 | - |
0.3589 | 9600 | 0.1131 | - |
0.3607 | 9650 | 0.0315 | - |
0.3626 | 9700 | 0.0659 | - |
0.3645 | 9750 | 0.043 | - |
0.3663 | 9800 | 0.0745 | - |
0.3682 | 9850 | 0.1236 | - |
0.3701 | 9900 | 0.0779 | - |
0.3719 | 9950 | 0.0654 | - |
0.3738 | 10000 | 0.0583 | - |
0.3757 | 10050 | 0.0821 | - |
0.3775 | 10100 | 0.0524 | - |
0.3794 | 10150 | 0.064 | - |
0.3813 | 10200 | 0.0451 | - |
0.3831 | 10250 | 0.0735 | - |
0.3850 | 10300 | 0.0443 | - |
0.3869 | 10350 | 0.044 | - |
0.3888 | 10400 | 0.0587 | - |
0.3906 | 10450 | 0.078 | - |
0.3925 | 10500 | 0.1261 | - |
0.3944 | 10550 | 0.0247 | - |
0.3962 | 10600 | 0.0789 | - |
0.3981 | 10650 | 0.0642 | - |
0.4000 | 10700 | 0.067 | - |
0.4018 | 10750 | 0.0436 | - |
0.4037 | 10800 | 0.0737 | - |
0.4056 | 10850 | 0.064 | - |
0.4074 | 10900 | 0.0476 | - |
0.4093 | 10950 | 0.1154 | - |
0.4112 | 11000 | 0.0601 | - |
0.4131 | 11050 | 0.1012 | - |
0.4149 | 11100 | 0.0936 | - |
0.4168 | 11150 | 0.055 | - |
0.4187 | 11200 | 0.0838 | - |
0.4205 | 11250 | 0.0785 | - |
0.4224 | 11300 | 0.0553 | - |
0.4243 | 11350 | 0.0614 | - |
0.4261 | 11400 | 0.1269 | - |
0.4280 | 11450 | 0.0619 | - |
0.4299 | 11500 | 0.0898 | - |
0.4317 | 11550 | 0.068 | - |
0.4336 | 11600 | 0.0609 | - |
0.4355 | 11650 | 0.0771 | - |
0.4374 | 11700 | 0.0695 | - |
0.4392 | 11750 | 0.0477 | - |
0.4411 | 11800 | 0.0724 | - |
0.4430 | 11850 | 0.0779 | - |
0.4448 | 11900 | 0.039 | - |
0.4467 | 11950 | 0.0471 | - |
0.4486 | 12000 | 0.0615 | - |
0.4504 | 12050 | 0.0641 | - |
0.4523 | 12100 | 0.0552 | - |
0.4542 | 12150 | 0.0842 | - |
0.4560 | 12200 | 0.0492 | - |
0.4579 | 12250 | 0.0711 | - |
0.4598 | 12300 | 0.0541 | - |
0.4616 | 12350 | 0.0506 | - |
0.4635 | 12400 | 0.0642 | - |
0.4654 | 12450 | 0.0663 | - |
0.4673 | 12500 | 0.0496 | - |
0.4691 | 12550 | 0.0926 | - |
0.4710 | 12600 | 0.0584 | - |
0.4729 | 12650 | 0.0613 | - |
0.4747 | 12700 | 0.0768 | - |
0.4766 | 12750 | 0.0714 | - |
0.4785 | 12800 | 0.068 | - |
0.4803 | 12850 | 0.0329 | - |
0.4822 | 12900 | 0.0873 | - |
0.4841 | 12950 | 0.0602 | - |
0.4859 | 13000 | 0.0857 | - |
0.4878 | 13050 | 0.0563 | - |
0.4897 | 13100 | 0.0461 | - |
0.4916 | 13150 | 0.0822 | - |
0.4934 | 13200 | 0.0591 | - |
0.4953 | 13250 | 0.0349 | - |
0.4972 | 13300 | 0.0486 | - |
0.4990 | 13350 | 0.0636 | - |
0.5009 | 13400 | 0.1146 | - |
0.5028 | 13450 | 0.0567 | - |
0.5046 | 13500 | 0.0325 | - |
0.5065 | 13550 | 0.0755 | - |
0.5084 | 13600 | 0.0922 | - |
0.5102 | 13650 | 0.0674 | - |
0.5121 | 13700 | 0.0805 | - |
0.5140 | 13750 | 0.0671 | - |
0.5158 | 13800 | 0.0939 | - |
0.5177 | 13850 | 0.1056 | - |
0.5196 | 13900 | 0.0825 | - |
0.5215 | 13950 | 0.0741 | - |
0.5233 | 14000 | 0.0425 | - |
0.5252 | 14050 | 0.051 | - |
0.5271 | 14100 | 0.0852 | - |
0.5289 | 14150 | 0.0454 | - |
0.5308 | 14200 | 0.0902 | - |
0.5327 | 14250 | 0.0863 | - |
0.5345 | 14300 | 0.0717 | - |
0.5364 | 14350 | 0.1116 | - |
0.5383 | 14400 | 0.0915 | - |
0.5401 | 14450 | 0.0681 | - |
0.5420 | 14500 | 0.0559 | - |
0.5439 | 14550 | 0.063 | - |
0.5458 | 14600 | 0.0856 | - |
0.5476 | 14650 | 0.0661 | - |
0.5495 | 14700 | 0.1111 | - |
0.5514 | 14750 | 0.0983 | - |
0.5532 | 14800 | 0.0885 | - |
0.5551 | 14850 | 0.0612 | - |
0.5570 | 14900 | 0.0764 | - |
0.5588 | 14950 | 0.0693 | - |
0.5607 | 15000 | 0.0839 | - |
0.5626 | 15050 | 0.0872 | - |
0.5644 | 15100 | 0.1113 | - |
0.5663 | 15150 | 0.0576 | - |
0.5682 | 15200 | 0.0645 | - |
0.5701 | 15250 | 0.0471 | - |
0.5719 | 15300 | 0.0376 | - |
0.5738 | 15350 | 0.0798 | - |
0.5757 | 15400 | 0.0996 | - |
0.5775 | 15450 | 0.0497 | - |
0.5794 | 15500 | 0.0579 | - |
0.5813 | 15550 | 0.066 | - |
0.5831 | 15600 | 0.1259 | - |
0.5850 | 15650 | 0.0936 | - |
0.5869 | 15700 | 0.0954 | - |
0.5887 | 15750 | 0.0543 | - |
0.5906 | 15800 | 0.0268 | - |
0.5925 | 15850 | 0.0362 | - |
0.5943 | 15900 | 0.0635 | - |
0.5962 | 15950 | 0.0497 | - |
0.5981 | 16000 | 0.0808 | - |
0.6000 | 16050 | 0.0759 | - |
0.6018 | 16100 | 0.0663 | - |
0.6037 | 16150 | 0.0418 | - |
0.6056 | 16200 | 0.0656 | - |
0.6074 | 16250 | 0.053 | - |
0.6093 | 16300 | 0.0763 | - |
0.6112 | 16350 | 0.0663 | - |
0.6130 | 16400 | 0.0651 | - |
0.6149 | 16450 | 0.0774 | - |
0.6168 | 16500 | 0.069 | - |
0.6186 | 16550 | 0.0647 | - |
0.6205 | 16600 | 0.0459 | - |
0.6224 | 16650 | 0.0639 | - |
0.6243 | 16700 | 0.0526 | - |
0.6261 | 16750 | 0.0758 | - |
0.6280 | 16800 | 0.04 | - |
0.6299 | 16850 | 0.0758 | - |
0.6317 | 16900 | 0.0421 | - |
0.6336 | 16950 | 0.0557 | - |
0.6355 | 17000 | 0.0733 | - |
0.6373 | 17050 | 0.0467 | - |
0.6392 | 17100 | 0.052 | - |
0.6411 | 17150 | 0.1272 | - |
0.6429 | 17200 | 0.081 | - |
0.6448 | 17250 | 0.0396 | - |
0.6467 | 17300 | 0.0494 | - |
0.6485 | 17350 | 0.0934 | - |
0.6504 | 17400 | 0.0745 | - |
0.6523 | 17450 | 0.055 | - |
0.6542 | 17500 | 0.065 | - |
0.6560 | 17550 | 0.0407 | - |
0.6579 | 17600 | 0.0409 | - |
0.6598 | 17650 | 0.0317 | - |
0.6616 | 17700 | 0.0433 | - |
0.6635 | 17750 | 0.0512 | - |
0.6654 | 17800 | 0.0731 | - |
0.6672 | 17850 | 0.0296 | - |
0.6691 | 17900 | 0.059 | - |
0.6710 | 17950 | 0.0727 | - |
0.6728 | 18000 | 0.0672 | - |
0.6747 | 18050 | 0.0661 | - |
0.6766 | 18100 | 0.0572 | - |
0.6785 | 18150 | 0.0499 | - |
0.6803 | 18200 | 0.0839 | - |
0.6822 | 18250 | 0.054 | - |
0.6841 | 18300 | 0.0754 | - |
0.6859 | 18350 | 0.1177 | - |
0.6878 | 18400 | 0.0772 | - |
0.6897 | 18450 | 0.063 | - |
0.6915 | 18500 | 0.0705 | - |
0.6934 | 18550 | 0.0653 | - |
0.6953 | 18600 | 0.085 | - |
0.6971 | 18650 | 0.0668 | - |
0.6990 | 18700 | 0.0788 | - |
0.7009 | 18750 | 0.0673 | - |
0.7028 | 18800 | 0.0606 | - |
0.7046 | 18850 | 0.0553 | - |
0.7065 | 18900 | 0.0435 | - |
0.7084 | 18950 | 0.071 | - |
0.7102 | 19000 | 0.0679 | - |
0.7121 | 19050 | 0.0632 | - |
0.7140 | 19100 | 0.0651 | - |
0.7158 | 19150 | 0.092 | - |
0.7177 | 19200 | 0.0626 | - |
0.7196 | 19250 | 0.0643 | - |
0.7214 | 19300 | 0.0242 | - |
0.7233 | 19350 | 0.0632 | - |
0.7252 | 19400 | 0.0638 | - |
0.7270 | 19450 | 0.0543 | - |
0.7289 | 19500 | 0.0312 | - |
0.7308 | 19550 | 0.1124 | - |
0.7327 | 19600 | 0.0432 | - |
0.7345 | 19650 | 0.0868 | - |
0.7364 | 19700 | 0.0493 | - |
0.7383 | 19750 | 0.0301 | - |
0.7401 | 19800 | 0.048 | - |
0.7420 | 19850 | 0.0594 | - |
0.7439 | 19900 | 0.0391 | - |
0.7457 | 19950 | 0.0523 | - |
0.7476 | 20000 | 0.0951 | - |
0.7495 | 20050 | 0.0954 | - |
0.7513 | 20100 | 0.0716 | - |
0.7532 | 20150 | 0.0366 | - |
0.7551 | 20200 | 0.0751 | - |
0.7570 | 20250 | 0.0516 | - |
0.7588 | 20300 | 0.1157 | - |
0.7607 | 20350 | 0.0645 | - |
0.7626 | 20400 | 0.065 | - |
0.7644 | 20450 | 0.0469 | - |
0.7663 | 20500 | 0.0943 | - |
0.7682 | 20550 | 0.0884 | - |
0.7700 | 20600 | 0.106 | - |
0.7719 | 20650 | 0.0783 | - |
0.7738 | 20700 | 0.0382 | - |
0.7756 | 20750 | 0.0686 | - |
0.7775 | 20800 | 0.0689 | - |
0.7794 | 20850 | 0.0721 | - |
0.7812 | 20900 | 0.0652 | - |
0.7831 | 20950 | 0.0994 | - |
0.7850 | 21000 | 0.0713 | - |
0.7869 | 21050 | 0.0612 | - |
0.7887 | 21100 | 0.0664 | - |
0.7906 | 21150 | 0.0514 | - |
0.7925 | 21200 | 0.0801 | - |
0.7943 | 21250 | 0.0469 | - |
0.7962 | 21300 | 0.0976 | - |
0.7981 | 21350 | 0.0998 | - |
0.7999 | 21400 | 0.0495 | - |
0.8018 | 21450 | 0.0625 | - |
0.8037 | 21500 | 0.0775 | - |
0.8055 | 21550 | 0.049 | - |
0.8074 | 21600 | 0.0816 | - |
0.8093 | 21650 | 0.0644 | - |
0.8112 | 21700 | 0.071 | - |
0.8130 | 21750 | 0.052 | - |
0.8149 | 21800 | 0.0267 | - |
0.8168 | 21850 | 0.0598 | - |
0.8186 | 21900 | 0.0402 | - |
0.8205 | 21950 | 0.0525 | - |
0.8224 | 22000 | 0.0745 | - |
0.8242 | 22050 | 0.061 | - |
0.8261 | 22100 | 0.0623 | - |
0.8280 | 22150 | 0.0823 | - |
0.8298 | 22200 | 0.0413 | - |
0.8317 | 22250 | 0.0679 | - |
0.8336 | 22300 | 0.0684 | - |
0.8355 | 22350 | 0.0372 | - |
0.8373 | 22400 | 0.0754 | - |
0.8392 | 22450 | 0.0714 | - |
0.8411 | 22500 | 0.089 | - |
0.8429 | 22550 | 0.0614 | - |
0.8448 | 22600 | 0.0584 | - |
0.8467 | 22650 | 0.0978 | - |
0.8485 | 22700 | 0.0639 | - |
0.8504 | 22750 | 0.0849 | - |
0.8523 | 22800 | 0.069 | - |
0.8541 | 22850 | 0.0533 | - |
0.8560 | 22900 | 0.0655 | - |
0.8579 | 22950 | 0.0516 | - |
0.8597 | 23000 | 0.0684 | - |
0.8616 | 23050 | 0.0471 | - |
0.8635 | 23100 | 0.0514 | - |
0.8654 | 23150 | 0.0665 | - |
0.8672 | 23200 | 0.0475 | - |
0.8691 | 23250 | 0.0915 | - |
0.8710 | 23300 | 0.0757 | - |
0.8728 | 23350 | 0.0549 | - |
0.8747 | 23400 | 0.0468 | - |
0.8766 | 23450 | 0.0961 | - |
0.8784 | 23500 | 0.0659 | - |
0.8803 | 23550 | 0.0544 | - |
0.8822 | 23600 | 0.1077 | - |
0.8840 | 23650 | 0.0527 | - |
0.8859 | 23700 | 0.0617 | - |
0.8878 | 23750 | 0.0547 | - |
0.8897 | 23800 | 0.0336 | - |
0.8915 | 23850 | 0.0567 | - |
0.8934 | 23900 | 0.0601 | - |
0.8953 | 23950 | 0.0577 | - |
0.8971 | 24000 | 0.0884 | - |
0.8990 | 24050 | 0.0614 | - |
0.9009 | 24100 | 0.0382 | - |
0.9027 | 24150 | 0.0506 | - |
0.9046 | 24200 | 0.0341 | - |
0.9065 | 24250 | 0.0534 | - |
0.9083 | 24300 | 0.0814 | - |
0.9102 | 24350 | 0.0874 | - |
0.9121 | 24400 | 0.0621 | - |
0.9140 | 24450 | 0.0793 | - |
0.9158 | 24500 | 0.0831 | - |
0.9177 | 24550 | 0.0564 | - |
0.9196 | 24600 | 0.0487 | - |
0.9214 | 24650 | 0.1 | - |
0.9233 | 24700 | 0.0852 | - |
0.9252 | 24750 | 0.054 | - |
0.9270 | 24800 | 0.046 | - |
0.9289 | 24850 | 0.0523 | - |
0.9308 | 24900 | 0.0661 | - |
0.9326 | 24950 | 0.0682 | - |
0.9345 | 25000 | 0.0418 | - |
0.9364 | 25050 | 0.0608 | - |
0.9382 | 25100 | 0.0951 | - |
0.9401 | 25150 | 0.052 | - |
0.9420 | 25200 | 0.0464 | - |
0.9439 | 25250 | 0.0874 | - |
0.9457 | 25300 | 0.033 | - |
0.9476 | 25350 | 0.0492 | - |
0.9495 | 25400 | 0.0735 | - |
0.9513 | 25450 | 0.0659 | - |
0.9532 | 25500 | 0.0936 | - |
0.9551 | 25550 | 0.085 | - |
0.9569 | 25600 | 0.0607 | - |
0.9588 | 25650 | 0.0646 | - |
0.9607 | 25700 | 0.0835 | - |
0.9625 | 25750 | 0.0641 | - |
0.9644 | 25800 | 0.0603 | - |
0.9663 | 25850 | 0.0857 | - |
0.9682 | 25900 | 0.0605 | - |
0.9700 | 25950 | 0.0614 | - |
0.9719 | 26000 | 0.0617 | - |
0.9738 | 26050 | 0.0639 | - |
0.9756 | 26100 | 0.0502 | - |
0.9775 | 26150 | 0.089 | - |
0.9794 | 26200 | 0.0604 | - |
0.9812 | 26250 | 0.0867 | - |
0.9831 | 26300 | 0.0597 | - |
0.9850 | 26350 | 0.0755 | - |
0.9868 | 26400 | 0.0628 | - |
0.9887 | 26450 | 0.0685 | - |
0.9906 | 26500 | 0.0794 | - |
0.9924 | 26550 | 0.0892 | - |
0.9943 | 26600 | 0.0716 | - |
0.9962 | 26650 | 0.0397 | - |
0.9981 | 26700 | 0.0933 | - |
0.9999 | 26750 | 0.0663 | - |
Framework Versions
- Python: 3.10.6
- SetFit: 1.0.3
- Sentence Transformers: 2.3.1
- Transformers: 4.35.2
- PyTorch: 2.2.0
- Datasets: 2.21.0
- Tokenizers: 0.15.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}