Update README.md
Browse files
README.md
CHANGED
@@ -8,6 +8,7 @@ metrics:
|
|
8 |
- mIoU
|
9 |
pipeline_tag: image-classification
|
10 |
---
|
|
|
11 |
# VisionLLaMA-Base-MAE
|
12 |
|
13 |
With the Masked Autoencoders' paradigm, VisionLLaMA-Base-MAE model is trained on ImageNet-1k without labels. It manifests substantial improvements over classification tasks (SFT, linear probing) on ImageNet-1K and the segmentation task on ADE20K.
|
@@ -18,8 +19,17 @@ With the Masked Autoencoders' paradigm, VisionLLaMA-Base-MAE model is trained on
|
|
18 |
| VisionLLaMA-Base-MAE (ep1600) |84.3 | 71.7| 50.2 |
|
19 |
|
20 |
|
|
|
21 |
|
|
|
22 |
|
23 |
-
#
|
24 |
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
- mIoU
|
9 |
pipeline_tag: image-classification
|
10 |
---
|
11 |
+
|
12 |
# VisionLLaMA-Base-MAE
|
13 |
|
14 |
With the Masked Autoencoders' paradigm, VisionLLaMA-Base-MAE model is trained on ImageNet-1k without labels. It manifests substantial improvements over classification tasks (SFT, linear probing) on ImageNet-1K and the segmentation task on ADE20K.
|
|
|
19 |
| VisionLLaMA-Base-MAE (ep1600) |84.3 | 71.7| 50.2 |
|
20 |
|
21 |
|
22 |
+
# How to Use
|
23 |
|
24 |
+
Please refer the [Github](https://github.com/Meituan-AutoML/VisionLLaMA) page for usage.
|
25 |
|
26 |
+
# Citation
|
27 |
|
28 |
+
```
|
29 |
+
@article{chu2024visionllama,
|
30 |
+
title={VisionLLaMA: A Unified LLaMA Interface for Vision Tasks},
|
31 |
+
author={Chu, Xiangxiang and Su, Jianlin and Zhang, Bo and Shen, Chunhua},
|
32 |
+
journal={arXiv preprint arXiv:2403.00522},
|
33 |
+
year={2024}
|
34 |
+
}
|
35 |
+
```
|