Edit model card

v1_5_mistral_full_1122

This model is a fine-tuned version of peiyi9979/math-shepherd-mistral-7b-prm on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2520
  • Accuracy: 0.9035
  • Precision: 0.8317
  • Recall: 0.7925
  • F1: 0.8116

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 765837
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 64
  • total_eval_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.3603 0.0575 20 0.4322 0.7550 0.5189 0.9057 0.6598
0.3252 0.1151 40 0.3813 0.8663 0.825 0.6226 0.7097
0.3574 0.1726 60 0.3824 0.8045 0.5789 0.9340 0.7148
0.31 0.2301 80 0.3275 0.8614 0.7155 0.7830 0.7477
0.2803 0.2877 100 0.3611 0.8738 0.7723 0.7358 0.7536
0.3893 0.3452 120 0.3245 0.8416 0.6694 0.7830 0.7217
0.3624 0.4027 140 0.3172 0.8812 0.8372 0.6792 0.75
0.3081 0.4603 160 0.3283 0.8639 0.7742 0.6792 0.7236
0.242 0.5178 180 0.2907 0.8837 0.7658 0.8019 0.7834
0.2692 0.5753 200 0.2787 0.8911 0.7925 0.7925 0.7925
0.2866 0.6329 220 0.2675 0.8787 0.7478 0.8113 0.7783
0.27 0.6904 240 0.2702 0.9035 0.8317 0.7925 0.8116
0.3112 0.7479 260 0.2605 0.9059 0.8864 0.7358 0.8041
0.2032 0.8055 280 0.2700 0.9010 0.8587 0.7453 0.7980
0.2326 0.8630 300 0.2549 0.9059 0.8333 0.8019 0.8173
0.2714 0.9205 320 0.2511 0.9035 0.8317 0.7925 0.8116
0.2562 0.9781 340 0.2520 0.9035 0.8317 0.7925 0.8116

Framework versions

  • Transformers 4.46.0
  • Pytorch 2.4.0+cu118
  • Datasets 3.0.0
  • Tokenizers 0.20.1
Downloads last month
25
Safetensors
Model size
7.24B params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mtzig/v1_5_mistral_full_1122

Finetuned
(2)
this model