File size: 6,642 Bytes
c995e38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup

from accelerate import Accelerator, DistributedType
from accelerate.utils import set_seed


def get_dataloaders(accelerator: Accelerator, batch_size: int = 16):
    """
    Creates a set of `DataLoader`s for the `glue` dataset,
    using "bert-base-cased" as the tokenizer.

    Args:
        accelerator (`Accelerator`):
            An `Accelerator` object
        batch_size (`int`, *optional*):
            The batch size for the train and validation DataLoaders.
    """
    tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
    datasets = load_dataset("glue", "mrpc")

    def tokenize_function(examples):
        # max_length=None => use the model max length (it's actually the default)
        outputs = tokenizer(examples["sentence1"], examples["sentence2"], truncation=True, max_length=None)
        return outputs

    # Apply the method we just defined to all the examples in all the splits of the dataset
    # starting with the main process first:
    with accelerator.main_process_first():
        tokenized_datasets = datasets.map(
            tokenize_function,
            batched=True,
            remove_columns=["idx", "sentence1", "sentence2"],
        )

    # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
    # transformers library
    tokenized_datasets = tokenized_datasets.rename_column("label", "labels")

    def collate_fn(examples):
        # On TPU it's best to pad everything to the same length or training will be very slow.
        max_length = 128 if accelerator.distributed_type == DistributedType.TPU else None
        # When using mixed precision we want round multiples of 8/16
        if accelerator.mixed_precision != "no":
            pad_to_multiple_of = 8
        else:
            pad_to_multiple_of = None

        return tokenizer.pad(
            examples,
            padding="longest",
            max_length=max_length,
            pad_to_multiple_of=pad_to_multiple_of,
            return_tensors="pt",
        )

    # Instantiate dataloaders.
    train_dataloader = DataLoader(
        tokenized_datasets["train"], shuffle=True, collate_fn=collate_fn, batch_size=batch_size, drop_last=True
    )
    eval_dataloader = DataLoader(
        tokenized_datasets["validation"],
        shuffle=False,
        collate_fn=collate_fn,
        batch_size=32,
        drop_last=(accelerator.mixed_precision == "fp8"),
    )

    return train_dataloader, eval_dataloader


def training_function(config):
    # Initialize accelerator
    accelerator = Accelerator(
        mixed_precision="fp16",
        log_with="aim",
        project_dir="aim_logs"
    )
    # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
    lr = config["lr"]
    num_epochs = int(config["num_epochs"])
    seed = int(config["seed"])
    batch_size = 16 if accelerator.num_processes > 1 else 32
    config["batch_size"] = batch_size
    metric = evaluate.load("glue", "mrpc")

    set_seed(seed, device_specific=True)
    train_dataloader, eval_dataloader = get_dataloaders(accelerator, batch_size)
    model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", return_dict=True)
    lr = lr * accelerator.num_processes

    optimizer = AdamW(params=model.parameters(), lr=lr)
    lr_scheduler = get_linear_schedule_with_warmup(
        optimizer=optimizer,
        num_warmup_steps=0,
        num_training_steps=(len(train_dataloader) * num_epochs),
    )

    model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
        model, optimizer, train_dataloader, eval_dataloader, lr_scheduler
    )

    accelerator.init_trackers(f'{accelerator.num_processes}_gpus', config)

    current_step = 0
    for epoch in range(num_epochs):
        model.train()
        total_loss = 0
        for _, batch in enumerate(train_dataloader):
            lr = lr_scheduler.get_lr()
            outputs = model(**batch)
            loss = outputs.loss
            batch_loss = accelerator.gather(loss).detach().mean().cpu().float()
            total_loss += batch_loss
            current_step += 1
            accelerator.log(
                {
                    "batch_loss":batch_loss,
                    "learning_rate":lr,
                }, 
                step=current_step, 
                log_kwargs={"aim":{"epoch":epoch}}
                )
            accelerator.backward(loss)
            optimizer.step()
            lr_scheduler.step()
            optimizer.zero_grad()
            current_step += 1

        model.eval()
        for step, batch in enumerate(eval_dataloader):
            # We could avoid this line since we set the accelerator with `device_placement=True`.
            batch.to(accelerator.device)
            with torch.no_grad():
                outputs = model(**batch)
            predictions = outputs.logits.argmax(dim=-1)
            predictions, references = accelerator.gather_for_metrics((predictions, batch["labels"]))
            metric.add_batch(
                predictions=predictions,
                references=references,
            )

        eval_metric = metric.compute()
        
        # Use accelerator.print to print only on the main process.
        accelerator.print(f"epoch {epoch}:", eval_metric)

        accelerator.log(
            {
                "accuracy": eval_metric["accuracy"],
                "f1": eval_metric["f1"],
                "train_loss": total_loss.item() / len(train_dataloader),
            },
            log_kwargs = {"aim":{"epoch":epoch}}
        )
    accelerator.end_training()


def main():
    config = {"lr": 2e-5, "num_epochs": 3, "seed": 42}
    training_function(config)


if __name__ == "__main__":
    main()