muffinnxz's picture
saving checkpoint-100
d66f507
|
raw
history blame
1.66 kB
metadata
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: doodeco style room
tags:
  - stable-diffusion-xl
  - stable-diffusion-xl-diffusers
  - text-to-image
  - diffusers
  - lora
inference: false
datasets:
  - muffinnxz/doodeco-example-style

LoRA DreamBooth - muffinnxz/sd-xl-doodeco-example-style

MODEL IS CURRENTLY TRAINING ...

Last checkpoint saved: checkpoint-100

These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.

The weights were trained on the concept prompt:

doodeco style room

Use this keyword to trigger your custom model in your prompts.

LoRA for the text encoder was enabled: False.

Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.

Usage

Make sure to upgrade diffusers to >= 0.19.0:

pip install diffusers --upgrade

In addition make sure to install transformers, safetensors, accelerate as well as the invisible watermark:

pip install invisible_watermark transformers accelerate safetensors

To just use the base model, you can run:

import torch
from diffusers import DiffusionPipeline, AutoencoderKL
vae = AutoencoderKL.from_pretrained('madebyollin/sdxl-vae-fp16-fix', torch_dtype=torch.float16)
pipe = DiffusionPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0",
    vae=vae, torch_dtype=torch.float16, variant="fp16",
    use_safetensors=True
)
pipe.to("cuda")
# This is where you load your trained weights
pipe.load_lora_weights('muffinnxz/sd-xl-doodeco-example-style')

prompt = "A majestic doodeco style room jumping from a big stone at night"
image = pipe(prompt=prompt, num_inference_steps=50).images[0]