muhtasham's picture
update model card README.md
be522a8
|
raw
history blame
2.01 kB
metadata
license: apache-2.0
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - google/fleurs
metrics:
  - wer
model-index:
  - name: Whisper Medium Tajik
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: google/fleurs tg_tj
          type: google/fleurs
          config: tg_tj
          split: test
          args: tg_tj
        metrics:
          - name: Wer
            type: wer
            value: 23.153018764230197

Whisper Medium Tajik

This model is a fine-tuned version of openai/whisper-medium on the google/fleurs tg_tj dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9217
  • Wer: 23.1530

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0016 66.0 1000 0.6929 24.2993
0.0001 133.0 2000 0.8054 23.3022
0.0001 199.0 3000 0.8652 23.2237
0.0 266.0 4000 0.9019 23.2394
0.0 333.0 5000 0.9217 23.1530

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2