metadata
tags:
- generated_from_trainer
datasets:
- mlsum
metrics:
- rouge
model-index:
- name: mbart-large-turkish-sum
results:
- task:
name: Summarization
type: summarization
dataset:
name: mlsum tu
type: mlsum
args: tu
metrics:
- name: Rouge1
type: rouge
value: 46.7011
Mukayese: Turkish NLP Strikes Back
Summarization: mukayese/mbart-large-turkish-sum
This model is a fine-tuned version of facebook/mbart-large-50 on the mlsum/tu dataset.
It achieves the following results on the evaluation set:
- Rouge1: 46.7011
- Rouge2: 34.0087
- Rougel: 41.5475
- Rougelsum: 43.2108
Check this paper for more details on the model and the dataset.
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10.0
- mixed_precision_training: Native AMP
- label_smoothing_factor: 0.1
Framework versions
- Transformers 4.11.3
- Pytorch 1.8.2+cu111
- Datasets 1.14.0
- Tokenizers 0.10.3
Citation
@misc{safaya-etal-2022-mukayese,
title={Mukayese: Turkish NLP Strikes Back},
author={Ali Safaya and Emirhan Kurtuluş and Arda Göktoğan and Deniz Yuret},
year={2022},
eprint={2203.01215},
archivePrefix={arXiv},
primaryClass={cs.CL}
}