mvpmaster's picture
Upload folder using huggingface_hub
2586af3 verified
|
raw
history blame
1.76 kB
---
tags:
- merge
- mergekit
- lazymergekit
- NousResearch/Yarn-Mistral-7b-128k
- Eric111/openchat-3.5-0106-128k-DPO
base_model:
- NousResearch/Yarn-Mistral-7b-128k
- Eric111/openchat-3.5-0106-128k-DPO
---
# openchat-3.5-0106-128k-DPO-fixed-32000
openchat-3.5-0106-128k-DPO-fixed-32000 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [NousResearch/Yarn-Mistral-7b-128k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-128k)
* [Eric111/openchat-3.5-0106-128k-DPO](https://huggingface.co/Eric111/openchat-3.5-0106-128k-DPO)
## 🧩 Configuration
```yaml
slices:
- sources:
- model: NousResearch/Yarn-Mistral-7b-128k
layer_range: [0, 32]
- model: Eric111/openchat-3.5-0106-128k-DPO
layer_range: [0, 32]
merge_method: slerp
base_model: NousResearch/Yarn-Mistral-7b-128k
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "mvpmaster/openchat-3.5-0106-128k-DPO-fixed-32000"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```