metadata
library_name: transformers
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
- generated_from_trainer
datasets:
- layoutlmv3
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: test
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: layoutlmv3
type: layoutlmv3
config: InvoiceExtraction
split: test
args: InvoiceExtraction
metrics:
- name: Precision
type: precision
value: 0.8860759493670886
- name: Recall
type: recall
value: 0.9210526315789473
- name: F1
type: f1
value: 0.9032258064516129
- name: Accuracy
type: accuracy
value: 0.94375
test
This model is a fine-tuned version of microsoft/layoutlmv3-base on the layoutlmv3 dataset. It achieves the following results on the evaluation set:
- Loss: 0.3028
- Precision: 0.8861
- Recall: 0.9211
- F1: 0.9032
- Accuracy: 0.9437
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- training_steps: 1000
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 4.3478 | 100 | 0.6867 | 0.6842 | 0.6842 | 0.6842 | 0.8063 |
No log | 8.6957 | 200 | 0.2381 | 0.8625 | 0.9079 | 0.8846 | 0.9313 |
No log | 13.0435 | 300 | 0.2598 | 0.8846 | 0.9079 | 0.8961 | 0.9313 |
No log | 17.3913 | 400 | 0.2165 | 0.8625 | 0.9079 | 0.8846 | 0.9375 |
0.3281 | 21.7391 | 500 | 0.2037 | 0.8625 | 0.9079 | 0.8846 | 0.9375 |
0.3281 | 26.0870 | 600 | 0.2571 | 0.8861 | 0.9211 | 0.9032 | 0.9437 |
0.3281 | 30.4348 | 700 | 0.2735 | 0.8861 | 0.9211 | 0.9032 | 0.9437 |
0.3281 | 34.7826 | 800 | 0.2993 | 0.8861 | 0.9211 | 0.9032 | 0.9437 |
0.3281 | 39.1304 | 900 | 0.3044 | 0.8861 | 0.9211 | 0.9032 | 0.9437 |
0.012 | 43.4783 | 1000 | 0.3028 | 0.8861 | 0.9211 | 0.9032 | 0.9437 |
Framework versions
- Transformers 4.47.0.dev0
- Pytorch 2.5.0+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3