test / README.md
mykh-med's picture
End of training
af7bcce verified
|
raw
history blame
3 kB
metadata
library_name: transformers
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
  - generated_from_trainer
datasets:
  - layoutlmv3
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: test
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: layoutlmv3
          type: layoutlmv3
          config: InvoiceExtraction
          split: test
          args: InvoiceExtraction
        metrics:
          - name: Precision
            type: precision
            value: 0.8860759493670886
          - name: Recall
            type: recall
            value: 0.9210526315789473
          - name: F1
            type: f1
            value: 0.9032258064516129
          - name: Accuracy
            type: accuracy
            value: 0.94375

test

This model is a fine-tuned version of microsoft/layoutlmv3-base on the layoutlmv3 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3028
  • Precision: 0.8861
  • Recall: 0.9211
  • F1: 0.9032
  • Accuracy: 0.9437

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 4.3478 100 0.6867 0.6842 0.6842 0.6842 0.8063
No log 8.6957 200 0.2381 0.8625 0.9079 0.8846 0.9313
No log 13.0435 300 0.2598 0.8846 0.9079 0.8961 0.9313
No log 17.3913 400 0.2165 0.8625 0.9079 0.8846 0.9375
0.3281 21.7391 500 0.2037 0.8625 0.9079 0.8846 0.9375
0.3281 26.0870 600 0.2571 0.8861 0.9211 0.9032 0.9437
0.3281 30.4348 700 0.2735 0.8861 0.9211 0.9032 0.9437
0.3281 34.7826 800 0.2993 0.8861 0.9211 0.9032 0.9437
0.3281 39.1304 900 0.3044 0.8861 0.9211 0.9032 0.9437
0.012 43.4783 1000 0.3028 0.8861 0.9211 0.9032 0.9437

Framework versions

  • Transformers 4.47.0.dev0
  • Pytorch 2.5.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3