|
--- |
|
license: llama3 |
|
--- |
|
|
|
# Model |
|
|
|
fine-tuned LLaMA 3 8B on synthetic dataset generated by GPT-4 and LLaMA 3 70B via MLX-LM |
|
|
|
## Usage |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
|
|
model_id = "mzbac/llama-3-8B-grammar-hf" |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
torch_dtype=torch.bfloat16, |
|
device_map="auto", |
|
|
|
) |
|
|
|
messages = [ |
|
{ |
|
"role": "system", |
|
"content": "Please correct, polish, or translate the text delimited by triple backticks to standard English.", |
|
}, |
|
] |
|
messages.append({"role": "user", "content":"Text=```neither η»ηζεε·₯ has been informed about the meeting```"}) |
|
|
|
input_ids = tokenizer.apply_chat_template( |
|
messages, |
|
add_generation_prompt=True, |
|
return_tensors="pt" |
|
).to(model.device) |
|
|
|
terminators = [ |
|
tokenizer.eos_token_id, |
|
tokenizer.convert_tokens_to_ids("<|eot_id|>") |
|
] |
|
|
|
outputs = model.generate( |
|
input_ids, |
|
max_new_tokens=256, |
|
eos_token_id=terminators, |
|
do_sample=True, |
|
temperature=0.1, |
|
) |
|
response = outputs[0] |
|
print(tokenizer.decode(response)) |
|
|
|
# <|begin_of_text|><|start_header_id|>system<|end_header_id|> |
|
|
|
# Please correct, polish, or translate the text delimited by triple backticks to standard English.<|eot_id|><|start_header_id|>user<|end_header_id|> |
|
|
|
# Text=```neither η»ηζεε·₯ has been informed about the meeting```<|eot_id|><|start_header_id|>assistant<|end_header_id|> |
|
|
|
# Output=Neither the manager nor the employees have been informed about the meeting.<|eot_id|> |
|
``` |