bert-base-uncased-de-ner

This model is a fine-tuned version of bert-base-uncased on the germeval_14 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1374
  • Precision: 0.8109
  • Recall: 0.7720
  • F1: 0.7910
  • Accuracy: 0.9786

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

The model was trained on data that follows the IOB convention. Full tagset with indices:

{'O': 0, 'B-PER': 1, 'I-PER': 2, 'B-ORG': 3, 'I-ORG': 4, 'B-LOC': 5, 'I-LOC': 6}

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 0
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 6
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.104 1.0 3000 0.0973 0.7027 0.7323 0.7172 0.9712
0.0597 2.0 6000 0.0942 0.8135 0.7172 0.7623 0.9766
0.0345 3.0 9000 0.1051 0.7924 0.7569 0.7742 0.9773
0.0172 4.0 12000 0.1170 0.8074 0.7628 0.7844 0.9779
0.0092 5.0 15000 0.1264 0.8068 0.7803 0.7933 0.9788
0.0035 6.0 18000 0.1374 0.8109 0.7720 0.7910 0.9786

Framework versions

  • Transformers 4.27.4
  • Pytorch 1.13.1+cu116
  • Datasets 2.11.0
  • Tokenizers 0.13.2
Downloads last month
125
Safetensors
Model size
109M params
Tensor type
I64
·
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Dataset used to train n6ai/bert-base-uncased-de-ner

Evaluation results