librarian-bot's picture
Librarian Bot: Add base_model information to model
1096aa4
|
raw
history blame
2.55 kB
metadata
language:
  - en
license: apache-2.0
library_name: transformers
tags:
  - generated_from_trainer
datasets:
  - conll2003
metrics:
  - precision
  - recall
  - f1
  - accuracy
base_model: bert-base-uncased
model-index:
  - name: bert-base-uncased-en-ner
    results:
      - task:
          type: token-classification
          name: Token Classification
        dataset:
          name: conll2003
          type: conll2003
          config: conll2003
          split: test
          args: conll2003
        metrics:
          - type: precision
            value: 0.9000587199060481
            name: Precision
          - type: recall
            value: 0.909565630192262
            name: Recall
          - type: f1
            value: 0.9047872026444719
            name: F1
          - type: accuracy
            value: 0.977246046543747
            name: Accuracy

bert-base-uncased-en-ner

This model is a fine-tuned version of bert-base-uncased on the conll2003 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1434
  • Precision: 0.9001
  • Recall: 0.9096
  • F1: 0.9048
  • Accuracy: 0.9772

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

The model was trained on data that follows the IOB convention. Full tagset with indices:

{'O': 0, 'B-PER': 1, 'I-PER': 2, 'B-ORG': 3, 'I-ORG': 4, 'B-LOC': 5, 'I-LOC': 6, 'B-MISC': 7, 'I-MISC': 8}

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 0
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0759 1.0 1756 0.1246 0.8878 0.8973 0.8925 0.9744
0.0299 2.0 3512 0.1427 0.8911 0.9040 0.8975 0.9749
0.0152 3.0 5268 0.1434 0.9001 0.9096 0.9048 0.9772

Framework versions

  • Transformers 4.27.2
  • Pytorch 1.13.1+cu116
  • Datasets 2.10.1
  • Tokenizers 0.13.2