emotion_model / README.md
nadyanvl's picture
End of training
d4dd3b8
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: emotion_model
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6

emotion_model

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3497
  • Accuracy: 0.6

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.0823 1.0 10 2.0560 0.1625
2.0479 2.0 20 2.0218 0.2812
1.9636 3.0 30 1.8882 0.4062
1.7902 4.0 40 1.6881 0.4313
1.5792 5.0 50 1.6159 0.3688
1.4429 6.0 60 1.3871 0.5687
1.2854 7.0 70 1.2973 0.5437
1.1487 8.0 80 1.2303 0.6
1.0374 9.0 90 1.2661 0.5375
0.9584 10.0 100 1.1662 0.5563
0.8108 11.0 110 1.2135 0.5312
0.7402 12.0 120 1.2117 0.5813
0.6349 13.0 130 1.1176 0.6062
0.5674 14.0 140 1.1794 0.575
0.5103 15.0 150 1.0948 0.6375
0.4826 16.0 160 1.1833 0.5875
0.4128 17.0 170 1.2601 0.5375
0.3664 18.0 180 1.3378 0.55
0.3112 19.0 190 1.2789 0.5437
0.335 20.0 200 1.2913 0.5625
0.3261 21.0 210 1.1114 0.6
0.3443 22.0 220 1.2177 0.5938
0.2642 23.0 230 1.2299 0.5938
0.2895 24.0 240 1.2339 0.5813
0.266 25.0 250 1.2384 0.5875
0.2725 26.0 260 1.2100 0.6062
0.2725 27.0 270 1.3073 0.575
0.2637 28.0 280 1.3019 0.5875
0.2561 29.0 290 1.3597 0.5437
0.2375 30.0 300 1.3404 0.5563
0.2188 31.0 310 1.2922 0.5813
0.2141 32.0 320 1.3778 0.5312
0.198 33.0 330 1.3473 0.5875
0.1805 34.0 340 1.3984 0.5437
0.1888 35.0 350 1.3508 0.5813
0.1867 36.0 360 1.3531 0.575
0.1596 37.0 370 1.5846 0.4875
0.1564 38.0 380 1.3380 0.5687
0.1719 39.0 390 1.5206 0.5312
0.1678 40.0 400 1.2929 0.5875
0.136 41.0 410 1.5031 0.55
0.1602 42.0 420 1.3855 0.5625
0.174 43.0 430 1.4385 0.5875
0.179 44.0 440 1.3153 0.575
0.1284 45.0 450 1.4295 0.5875
0.1419 46.0 460 1.4126 0.575
0.1425 47.0 470 1.3760 0.5687
0.1602 48.0 480 1.4374 0.5875
0.1473 49.0 490 1.3126 0.5813
0.153 50.0 500 1.3497 0.6

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3