|
--- |
|
license: bsd-3-clause |
|
language: |
|
- zh |
|
- en |
|
- id |
|
- ja |
|
- es |
|
--- |
|
|
|
# TUBELEX Statistical Language Models |
|
|
|
N-gram models on the TUBELEX YouTube subtitle corpora. We provide modified Kneser-Ney language models of order 5 ([Heafield et al., 2013](https://aclanthology.org/P13-2121)), i.e. [KenLM](https://kheafield.com/code/kenlm/) models. |
|
|
|
The files are in LZMA-compressed ARPA format. |
|
|
|
# What is TUBELEX? |
|
|
|
TUBELEX is a YouTube subtitle corpus currently available for Chinese, English, Indonesian, Japanese, and Spanish. |
|
|
|
- [preprint](https://arxiv.org/abs/2410.03240), BibTeX entry: |
|
``` |
|
@article{nohejl_etal_2024_film, |
|
title={Beyond {{Film Subtitles}}: {{Is YouTube}} the {{Best Approximation}} of {{Spoken Vocabulary}}?}, |
|
author={Nohejl, Adam and Hudi, Frederikus and Kardinata, Eunike Andriani and Ozaki, Shintaro and Riera Machin, Maria Angelica and Sun, Hongyu and Vasselli, Justin and Watanabe, Taro}, |
|
year={2024}, eprint={2410.03240}, archiveprefix={arXiv}, primaryclass={cs.CL}, |
|
url={https://arxiv.org/abs/2410.03240v1}, journal={ArXiv preprint}, volume={arXiv:2410.03240v1 [cs]} |
|
} |
|
``` |
|
|
|
- [fastText word embeddings](https://huggingface.co/naist-nlp/tubelex-fasttext) |
|
- [word frequencies and code](https://github.com/naist-nlp/tubelex) |
|
|
|
# Usage |
|
|
|
To download and use the KenLM models in Python, first install dependencies: |
|
|
|
``` |
|
pip install huggingface_hub |
|
pip install https://github.com/kpu/kenlm/archive/master.zip |
|
``` |
|
|
|
You can then use e.g. the English (`en`) model in the following way: |
|
|
|
``` |
|
import kenlm |
|
from huggingface_hub import hf_hub_download |
|
|
|
model_file = hf_hub_download(repo_id='naist-nlp/tubelex-kenlm', filename='tubelex-en.arpa.xz') |
|
# Loading the model requires KenLM to be compiled with LZMA support (`HAVE_XZLIB`). |
|
# Otherwise you fill first need to decompress the model. |
|
model = kenlm.Model(model_file) |
|
|
|
text = ''a sequence of words' # pre-tokenized, lower-cased, without punctuation |
|
model.perplexity(text) |
|
``` |
|
|