wallpad-record
This model is a fine-tuned version of namkyeong/facebook_wav2vec2-xls-r-300m_50h on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3326
- Cer: 0.0806
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 70
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Cer |
---|---|---|---|---|
2.5996 | 0.78 | 50 | 1.3224 | 0.3389 |
1.048 | 1.56 | 100 | 0.6909 | 0.1913 |
0.6576 | 2.34 | 150 | 0.5882 | 0.1624 |
0.4487 | 3.12 | 200 | 0.5037 | 0.1304 |
0.3178 | 3.91 | 250 | 0.4947 | 0.1328 |
0.2739 | 4.69 | 300 | 0.5637 | 0.1365 |
0.279 | 5.47 | 350 | 0.5534 | 0.1353 |
0.2661 | 6.25 | 400 | 0.5202 | 0.1242 |
0.3306 | 7.03 | 450 | 0.6083 | 0.1691 |
0.2876 | 7.81 | 500 | 0.6123 | 0.1667 |
0.2746 | 8.59 | 550 | 0.5902 | 0.1556 |
0.2399 | 9.38 | 600 | 0.5128 | 0.1421 |
0.2257 | 10.16 | 650 | 0.5274 | 0.1384 |
0.2041 | 10.94 | 700 | 0.5781 | 0.1581 |
0.1853 | 11.72 | 750 | 0.5515 | 0.1402 |
0.1612 | 12.5 | 800 | 0.5549 | 0.1464 |
0.1797 | 13.28 | 850 | 0.5097 | 0.1402 |
0.1423 | 14.06 | 900 | 0.5133 | 0.1433 |
0.1544 | 14.84 | 950 | 0.4362 | 0.1248 |
0.119 | 15.62 | 1000 | 0.3969 | 0.1002 |
0.1342 | 16.41 | 1050 | 0.4917 | 0.1248 |
0.1181 | 17.19 | 1100 | 0.6039 | 0.1507 |
0.1174 | 17.97 | 1150 | 0.4627 | 0.1199 |
0.0913 | 18.75 | 1200 | 0.5063 | 0.1267 |
0.0913 | 19.53 | 1250 | 0.5242 | 0.1310 |
0.0904 | 20.31 | 1300 | 0.5154 | 0.1298 |
0.0974 | 21.09 | 1350 | 0.4267 | 0.1132 |
0.0861 | 21.88 | 1400 | 0.4646 | 0.1273 |
0.0784 | 22.66 | 1450 | 0.4437 | 0.1095 |
0.0723 | 23.44 | 1500 | 0.4498 | 0.1187 |
0.0762 | 24.22 | 1550 | 0.4895 | 0.1205 |
0.0704 | 25.0 | 1600 | 0.5219 | 0.1230 |
0.0673 | 25.78 | 1650 | 0.4321 | 0.1125 |
0.059 | 26.56 | 1700 | 0.4554 | 0.1199 |
0.056 | 27.34 | 1750 | 0.4489 | 0.1113 |
0.0648 | 28.12 | 1800 | 0.4209 | 0.1082 |
0.0538 | 28.91 | 1850 | 0.4840 | 0.1242 |
0.0472 | 29.69 | 1900 | 0.4573 | 0.1070 |
0.056 | 30.47 | 1950 | 0.4232 | 0.1144 |
0.0414 | 31.25 | 2000 | 0.3984 | 0.1107 |
0.0458 | 32.03 | 2050 | 0.4103 | 0.0984 |
0.0399 | 32.81 | 2100 | 0.4675 | 0.1070 |
0.0392 | 33.59 | 2150 | 0.4009 | 0.0898 |
0.0418 | 34.38 | 2200 | 0.3986 | 0.0996 |
0.0428 | 35.16 | 2250 | 0.3776 | 0.0959 |
0.0365 | 35.94 | 2300 | 0.4121 | 0.1039 |
0.0331 | 36.72 | 2350 | 0.4141 | 0.1107 |
0.0298 | 37.5 | 2400 | 0.3763 | 0.0892 |
0.0416 | 38.28 | 2450 | 0.4031 | 0.1009 |
0.035 | 39.06 | 2500 | 0.3490 | 0.0935 |
0.0334 | 39.84 | 2550 | 0.3775 | 0.0904 |
0.0341 | 40.62 | 2600 | 0.3555 | 0.0843 |
0.0329 | 41.41 | 2650 | 0.3817 | 0.0879 |
0.0347 | 42.19 | 2700 | 0.3638 | 0.0892 |
0.0314 | 42.97 | 2750 | 0.3870 | 0.0966 |
0.0298 | 43.75 | 2800 | 0.3936 | 0.0959 |
0.03 | 44.53 | 2850 | 0.3997 | 0.0916 |
0.0251 | 45.31 | 2900 | 0.4687 | 0.1095 |
0.0263 | 46.09 | 2950 | 0.4156 | 0.0978 |
0.0249 | 46.88 | 3000 | 0.4065 | 0.0984 |
0.018 | 47.66 | 3050 | 0.3768 | 0.0904 |
0.0254 | 48.44 | 3100 | 0.3737 | 0.0892 |
0.0253 | 49.22 | 3150 | 0.3920 | 0.0916 |
0.0188 | 50.0 | 3200 | 0.3867 | 0.0892 |
0.0195 | 50.78 | 3250 | 0.3570 | 0.0910 |
0.0189 | 51.56 | 3300 | 0.3475 | 0.0941 |
0.0167 | 52.34 | 3350 | 0.3259 | 0.0824 |
0.0145 | 53.12 | 3400 | 0.3227 | 0.0812 |
0.014 | 53.91 | 3450 | 0.3716 | 0.0873 |
0.0165 | 54.69 | 3500 | 0.3610 | 0.0836 |
0.014 | 55.47 | 3550 | 0.3537 | 0.0830 |
0.0133 | 56.25 | 3600 | 0.3600 | 0.0830 |
0.0126 | 57.03 | 3650 | 0.3519 | 0.0830 |
0.0131 | 57.81 | 3700 | 0.3479 | 0.0830 |
0.0111 | 58.59 | 3750 | 0.3540 | 0.0830 |
0.0138 | 59.38 | 3800 | 0.3273 | 0.0812 |
0.0102 | 60.16 | 3850 | 0.3247 | 0.0756 |
0.0083 | 60.94 | 3900 | 0.3501 | 0.0775 |
0.0092 | 61.72 | 3950 | 0.3405 | 0.0787 |
0.0113 | 62.5 | 4000 | 0.3435 | 0.0800 |
0.0092 | 63.28 | 4050 | 0.3549 | 0.0806 |
0.0109 | 64.06 | 4100 | 0.3270 | 0.0781 |
0.0113 | 64.84 | 4150 | 0.3218 | 0.0763 |
0.0095 | 65.62 | 4200 | 0.3309 | 0.0787 |
0.0095 | 66.41 | 4250 | 0.3239 | 0.0769 |
0.01 | 67.19 | 4300 | 0.3191 | 0.0781 |
0.0077 | 67.97 | 4350 | 0.3247 | 0.0787 |
0.0082 | 68.75 | 4400 | 0.3317 | 0.0793 |
0.0098 | 69.53 | 4450 | 0.3326 | 0.0806 |
Framework versions
- Transformers 4.17.0
- Pytorch 1.11.0
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 0