metadata
base_model: google/paligemma-3b-pt-224
library_name: peft
license: gemma
tags:
- generated_from_trainer
model-index:
- name: paligemma_VQAv2_ko
results: []
pipeline_tag: visual-question-answering
datasets:
- HuggingFaceM4/VQAv2
language:
- ko
- en
paligemma_VQAv2_ko
This model is a fine-tuned version of google/paligemma-3b-pt-224 on an korean VQAv2 dataset.(HuggingFaceM4/VQAv2)
ds = load_dataset('HuggingFaceM4/VQAv2', split="train[:100%]",cache_dir=root_path+'dataset/')
Model description
This model was finetuned using VQAv2 datasets translated into KOREAN.
Intended uses & limitations
Nothing
Training and evaluation data
Nothing
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- num_epochs: 2
Framework versions
- PEFT 0.8.2
- Transformers 4.45.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1