mistral-nanotron / README.md
thomwolf's picture
thomwolf HF staff
explain better
9d018f5
|
raw
history blame
1.16 kB
---
library_name: nanotron
---
# βš™οΈ Nano-Mistral
Modeling code for Mistral to use with [Nanotron](https://github.com/huggingface/nanotron/)
Also contains converted pretrained weights for Mistral-7B-0.1: https://huggingface.co/mistralai/Mistral-7B-v0.1
## πŸš€ Quickstart
```bash
# Generate a config file
python config_tiny_mistral.py
# Run training
export CUDA_DEVICE_MAX_CONNECTIONS=1 # important for some distributed operations
torchrun --nproc_per_node=8 run_train.py --config-file config_tiny_mistral.yaml
```
## πŸš€ Run generation with pretrained Mistral-7B-0.1
```bash
export CUDA_DEVICE_MAX_CONNECTIONS=1
torchrun --nproc_per_node=1 run_generate.py --ckpt-path ./pretrained/Mistral-7B-v0.1
```
## πŸš€ Use your custom model
- Update the `MistralConfig` class in `config_tiny_mistral.py` to match your model's configuration
- Update the `MistralForTraining` class in `modeling_mistral.py` to match your model's architecture
- Pass the previous to the `DistributedTrainer` class in `run_train.py`:
```python
trainer = DistributedTrainer(config_file, model_class=MistralForTraining, model_config_class=MistralConfig)
```
- Run training as usual