nataliebiancaalexander's picture
shawhin/distilbert-base-uncased-lora-text-classification
7c347ae verified
metadata
license: apache-2.0
library_name: peft
tags:
  - generated_from_trainer
metrics:
  - accuracy
base_model: distilbert-base-uncased
model-index:
  - name: distilbert-base-uncased-lora-text-classification
    results: []

distilbert-base-uncased-lora-text-classification

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0615
  • Accuracy: {'accuracy': 0.882}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 250 0.3942 {'accuracy': 0.877}
0.4084 2.0 500 0.4114 {'accuracy': 0.884}
0.4084 3.0 750 0.5551 {'accuracy': 0.881}
0.1907 4.0 1000 0.6589 {'accuracy': 0.886}
0.1907 5.0 1250 0.7492 {'accuracy': 0.881}
0.0624 6.0 1500 0.9122 {'accuracy': 0.877}
0.0624 7.0 1750 1.0237 {'accuracy': 0.884}
0.0078 8.0 2000 1.0415 {'accuracy': 0.884}
0.0078 9.0 2250 1.0479 {'accuracy': 0.882}
0.0091 10.0 2500 1.0615 {'accuracy': 0.882}

Framework versions

  • PEFT 0.9.0
  • Transformers 4.37.2
  • Pytorch 2.2.0
  • Datasets 2.17.1
  • Tokenizers 0.15.2