nateraw's picture
Training in progress epoch 13
340931e
|
raw
history blame
21.2 kB
metadata
license: other
tags:
  - generated_from_keras_callback
model-index:
  - name: nateraw/mit-b0-finetuned-sidewalks-v2
    results: []

nateraw/mit-b0-finetuned-sidewalks-v2

This model is a fine-tuned version of nvidia/mit-b0 on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.3146
  • Validation Loss: 0.4175
  • Validation Mean Iou: 0.3339
  • Validation Mean Accuracy: 0.3995
  • Validation Overall Accuracy: 0.8745
  • Validation Per Category Iou: [0. 0.81054591 0.88286867 0.68551149 0.86089895 0.4562385 nan 0.4522713 0.55496016 0.01456189 0.83576109 0.
  1.     0.         0.         0.50709788 0.         0.
    

0.73464008 0.00175153 0.35021502 0.57263292 0. nan 0. 0.25185222 0.14419755 0. 0.85952374 0.70281003 0.9270307 0.17660456 0.04867831 0.18762581 0. ]

  • Validation Per Category Accuracy: [0. 0.9092016 0.94168672 0.86545289 0.89611216 0.55273728 nan 0.61409823 0.76682349 0.01569689 0.92776282 0.
  1.     0.         0.         0.59972229 0.         0.
    

0.86700656 0.00175747 0.54181633 0.67419762 0. nan 0. 0.3252672 0.14789466 0. 0.9316378 0.88743565 0.97060047 0.33277846 0.15319149 0.25967892 0. ]

  • Epoch: 13

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'learning_rate': 6e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Validation Loss Validation Mean Iou Validation Mean Accuracy Validation Overall Accuracy Validation Per Category Iou Validation Per Category Accuracy Epoch
1.4089 0.8220 0.1975 0.2427 0.7701 [0. 0.58353931 0.7655921 0.04209491 0.53135026 0.11779776
    nan 0.07709853 0.15950712 0.         0.69634813 0.
  1.     0.         0.         0.         0.         0.
    

0.61456822 0. 0.24971248 0.27129675 0. nan 0. 0.07697324 0. 0. 0.78576516 0.61267064 0.84564576 0. 0. 0.08904216 0. ] | [0. 0.88026971 0.93475302 0.04216372 0.5484085 0.13285614 nan 0.08669707 0.19044773 0. 0.90089024 0. 0. 0. 0. 0. 0. 0. 0.76783975 0. 0.42102101 0.28659817 0. nan 0. 0.08671771 0. 0. 0.89590301 0.74932576 0.9434814 0. 0. 0.14245566 0. ] | 0 | | 0.8462 | 0.6135 | 0.2551 | 0.2960 | 0.8200 | [0. 0.66967645 0.80571406 0.56416239 0.66692248 0.24744912 nan 0.23994505 0.28962463 0. 0.76504783 0. 0. 0. 0. 0.14111353 0. 0. 0.6924468 0. 0.27988701 0.41876094 0. nan 0. 0.14755829 0. 0. 0.81614463 0.68429711 0.87710938 0. 0. 0.11234171 0. ] | [0. 0.83805933 0.94928385 0.59586511 0.72913519 0.30595504 nan 0.3128234 0.34805831 0. 0.87847495 0. 0. 0. 0. 0.14205167 0. 0. 0.87543619 0. 0.36001144 0.49498574 0. nan 0. 0.18179115 0. 0. 0.92867923 0.7496178 0.92220166 0. 0. 0.15398549 0. ] | 1 | | 0.7134 | 0.5660 | 0.2780 | 0.3320 | 0.8286 | [0. 0.64791461 0.83800512 0.67301044 0.68120631 0.27361472 nan 0.26715802 0.43596999 0. 0.78649287 0. 0. 0. 0. 0.41256964 0. 0. 0.71114766 0. 0.31646321 0.44682442 0. nan 0. 0.17132551 0. 0. 0.81845697 0.67536699 0.88940936 0. 0. 0.1304862 0. ] | [0. 0.85958877 0.92084269 0.82341633 0.74725972 0.33495972 nan 0.40755277 0.56591531 0. 0.90641721 0. 0. 0. 0. 0.48144408 0. 0. 0.88294811 0. 0.46962078 0.47517397 0. nan 0. 0.20631607 0. 0. 0.90956851 0.85856042 0.94107052 0. 0. 0.16669713 0. ] | 2 | | 0.6320 | 0.5173 | 0.2894 | 0.3454 | 0.8435 | [0. 0.70789146 0.84902296 0.65266358 0.76099965 0.32934391 nan 0.29576422 0.43988204 0. 0.79276447 0. 0. 0. 0. 0.42668367 0. 0. 0.71717911 0. 0.32151249 0.50084444 0. nan 0. 0.18711455 0. 0. 0.82903803 0.68990498 0.8990059 0. 0.00213015 0.14819771 0. ] | [0. 0.84048763 0.93514369 0.68355212 0.88302113 0.458816 nan 0.38623272 0.69456442 0. 0.92379471 0. 0. 0. 0. 0.50677438 0. 0. 0.90362965 0. 0.4662386 0.57368294 0. nan 0. 0.23281768 0. 0. 0.9001526 0.86786434 0.95195314 0. 0.00333751 0.18532191 0. ] | 3 | | 0.5609 | 0.5099 | 0.2920 | 0.3599 | 0.8385 | [0. 0.70817583 0.84131144 0.66573523 0.81449696 0.38891117 nan 0.28124784 0.42659255 0. 0.80855146 0. 0. 0. 0. 0.46011866 0. 0. 0.65458792 0. 0.28411565 0.46758138 0. nan 0. 0.21849067 0. 0. 0.83829062 0.71207623 0.89929169 0. 0.02846127 0.13782635 0. ] | [0. 0.88632871 0.91269832 0.79044294 0.88368528 0.57405218 nan 0.35035973 0.77610775 0. 0.8889696 0. 0. 0. 0. 0.6020786 0. 0. 0.74586521 0. 0.61602403 0.54519561 0. nan 0. 0.28447396 0. 0. 0.94520232 0.85544414 0.95994042 0. 0.04680851 0.21407134 0. ] | 4 | | 0.5256 | 0.4741 | 0.3045 | 0.3598 | 0.8558 | [0.00000000e+00 7.50159008e-01 8.53654462e-01 6.44928131e-01 7.90455244e-01 4.33599913e-01 nan 3.33472954e-01 4.74502513e-01 0.00000000e+00 8.01366017e-01 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 4.67653814e-01 0.00000000e+00 0.00000000e+00 7.27412479e-01 0.00000000e+00 4.18946113e-01 5.04714837e-01 0.00000000e+00 nan 0.00000000e+00 2.00373855e-01 0.00000000e+00 0.00000000e+00 8.50200795e-01 7.41636173e-01 9.08320534e-01 2.77259907e-04 0.00000000e+00 1.45430716e-01 0.00000000e+00] | [0.00000000e+00 8.86487233e-01 9.05201886e-01 7.23139265e-01 8.91929263e-01 7.26675641e-01 nan 4.36386295e-01 6.64378543e-01 0.00000000e+00 8.89056843e-01 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.65450644e-01 0.00000000e+00 0.00000000e+00 9.27446136e-01 0.00000000e+00 5.36031025e-01 5.84198054e-01 0.00000000e+00 nan 0.00000000e+00 2.42514534e-01 0.00000000e+00 0.00000000e+00 9.31954754e-01 8.26849708e-01 9.59880377e-01 2.79039335e-04 0.00000000e+00 1.77106051e-01 0.00000000e+00] | 5 | | 0.4761 | 0.4922 | 0.3036 | 0.3754 | 0.8517 | [0.00000000e+00 7.18490241e-01 8.54701589e-01 5.90903088e-01 8.21902743e-01 4.76229883e-01 nan 3.32447673e-01 4.80642540e-01 0.00000000e+00 8.02904449e-01 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 4.73285636e-01 0.00000000e+00 0.00000000e+00 7.16608930e-01 0.00000000e+00 3.16598081e-01 5.12540924e-01 0.00000000e+00 nan 0.00000000e+00 2.27702968e-01 0.00000000e+00 0.00000000e+00 8.51831675e-01 7.39827330e-01 9.07152231e-01 5.59070700e-04 3.70370370e-02 1.56538301e-01 0.00000000e+00] | [0.00000000e+00 9.20834531e-01 8.92075255e-01 7.48664032e-01 9.03709011e-01 7.40703529e-01 nan 4.40828188e-01 7.92719139e-01 0.00000000e+00 9.21593374e-01 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 6.90292855e-01 0.00000000e+00 0.00000000e+00 8.42229041e-01 0.00000000e+00 4.75170857e-01 6.72591473e-01 0.00000000e+00 nan 0.00000000e+00 2.94713089e-01 0.00000000e+00 0.00000000e+00 9.26034809e-01 8.39522012e-01 9.66679296e-01 6.06188900e-04 1.12807676e-01 2.07280968e-01 0.00000000e+00] | 6 | | 0.4495 | 0.4797 | 0.3035 | 0.3702 | 0.8468 | [0.00000000e+00 7.52163526e-01 8.46563375e-01 7.16396797e-01 7.38850637e-01 3.93073019e-01 nan 3.31795957e-01 4.92991567e-01 0.00000000e+00 8.11302090e-01 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.16059849e-01 0.00000000e+00 0.00000000e+00 6.56058294e-01 1.25948501e-02 2.66942435e-01 5.34406894e-01 0.00000000e+00 nan 0.00000000e+00 2.27750085e-01 4.86381323e-04 0.00000000e+00 8.48618960e-01 7.25828093e-01 9.17747637e-01 8.28380212e-03 6.74590297e-02 1.51281596e-01 0.00000000e+00] | [0.00000000e+00 8.75360044e-01 9.43650850e-01 8.78658645e-01 7.76578096e-01 4.85757596e-01 nan 4.30901582e-01 7.54126335e-01 0.00000000e+00 9.30112537e-01 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 6.42914247e-01 0.00000000e+00 0.00000000e+00 7.57605356e-01 1.27102686e-02 6.50888458e-01 6.94757080e-01 0.00000000e+00 nan 0.00000000e+00 2.91727649e-01 4.86381323e-04 0.00000000e+00 9.42251577e-01 8.60753175e-01 9.56778008e-01 8.51551074e-03 1.38756779e-01 1.83583708e-01 0.00000000e+00] | 7 | | 0.4193 | 0.4487 | 0.3073 | 0.3633 | 0.8594 | [0. 0.77081114 0.86089485 0.64464211 0.82962632 0.36186873 nan 0.39092332 0.5399988 0. 0.81734925 0. 0. 0. 0. 0.50271555 0. 0. 0.70239658 0. 0.30875695 0.52195319 0. nan 0. 0.20124517 0.00696273 0. 0.84526591 0.72563399 0.91703372 0. 0.03526147 0.15693635 0. ] | [0. 0.8654775 0.95711297 0.70665759 0.93130714 0.42436958 nan 0.52892143 0.69243377 0. 0.91682626 0. 0. 0. 0. 0.62315913 0. 0. 0.86251114 0. 0.5607807 0.70416055 0. nan 0. 0.24483525 0.00698305 0. 0.921099 0.81848055 0.96789871 0. 0.06891948 0.18778302 0. ] | 8 | | 0.3883 | 0.4824 | 0.3086 | 0.3690 | 0.8527 | [0. 0.76454291 0.86544951 0.70501066 0.77912256 0.39088976 nan 0.40275725 0.53334923 0. 0.82777802 0. 0. 0. 0. 0.49916177 0. 0. 0.68780083 0.01500768 0.31589145 0.53805504 0. nan 0. 0.22450413 0.03544121 0. 0.82663975 0.60689445 0.91513911 0.12702194 0.0163284 0.10604071 0. ] | [0. 0.86846682 0.93345513 0.77258597 0.90365389 0.54440067 nan 0.51997559 0.73323435 0. 0.92499729 0. 0. 0. 0. 0.62015064 0. 0. 0.8190305 0.01503264 0.61258781 0.62514291 0. nan 0. 0.28141855 0.03574903 0. 0.95838638 0.66828866 0.96505306 0.19804095 0.04463913 0.1315269 0. ] | 9 | | 0.3736 | 0.4515 | 0.3180 | 0.3859 | 0.8600 | [0. 0.77296038 0.8679117 0.60122746 0.84573808 0.42877201 nan 0.40372521 0.5356554 0. 0.82057963 0. 0. 0. 0. 0.48309209 0. 0. 0.70156487 0.07165346 0.31172072 0.45383525 0. nan 0. 0.26337213 0.07457255 0. 0.85227381 0.7079085 0.92271657 0.20363628 0.03853875 0.13249146 0. ] | [0. 0.90081404 0.93156248 0.71723323 0.91251575 0.57187527 nan 0.53665381 0.74547838 0. 0.93718616 0. 0. 0. 0. 0.6410839 0. 0. 0.80529967 0.07249561 0.6074764 0.5775282 0. nan 0. 0.34898163 0.07545859 0. 0.95221746 0.80297775 0.96768443 0.26155608 0.19382562 0.17354842 0. ] | 10 | | 0.3487 | 0.4486 | 0.3181 | 0.3898 | 0.8637 | [0. 0.79416982 0.87767891 0.70942695 0.81634288 0.46749785 nan 0.42873013 0.48671464 0. 0.82752704 0. 0. 0. 0. 0.50844774 0. 0. 0.68070149 0.03976498 0.29304387 0.46322705 0. nan 0. 0.24856882 0.12795031 0. 0.84646906 0.71781094 0.92550642 0.04810685 0.04610752 0.14423047 0. ] | [0. 0.86951324 0.95247608 0.82408892 0.90393017 0.59760857 nan 0.5760741 0.83602638 0. 0.93420702 0. 0. 0. 0. 0.63502483 0. 0. 0.76902695 0.04024918 0.57179186 0.75842139 0. nan 0. 0.30837498 0.13239994 0. 0.95283514 0.78607095 0.96594744 0.05354669 0.18906967 0.2060098 0. ] | 11 | | 0.3460 | 0.4342 | 0.3234 | 0.3852 | 0.8669 | [0. 0.76828673 0.86958873 0.66044471 0.84588115 0.46323947 nan 0.41208499 0.54202812 0. 0.82543751 0. 0. 0. 0. 0.50071248 0. 0. 0.72333932 0.0173886 0.36535728 0.5284402 0. nan 0. 0.24239821 0.13456635 0. 0.86084123 0.73217705 0.92386442 0.09545854 0.04193608 0.11945951 0. ] | [0. 0.92666259 0.91906703 0.74134089 0.92518489 0.60022437 nan 0.56316038 0.77045814 0. 0.93600314 0. 0. 0. 0. 0.61358664 0. 0. 0.87835072 0.01757469 0.57608316 0.64108174 0. nan 0. 0.30432247 0.13750695 0. 0.93332326 0.85806371 0.96442783 0.10753599 0.15152274 0.14552189 0. ] | 12 | | 0.3146 | 0.4175 | 0.3339 | 0.3995 | 0.8745 | [0. 0.81054591 0.88286867 0.68551149 0.86089895 0.4562385 nan 0.4522713 0.55496016 0.01456189 0.83576109 0. 0. 0. 0. 0.50709788 0. 0. 0.73464008 0.00175153 0.35021502 0.57263292 0. nan 0. 0.25185222 0.14419755 0. 0.85952374 0.70281003 0.9270307 0.17660456 0.04867831 0.18762581 0. ] | [0. 0.9092016 0.94168672 0.86545289 0.89611216 0.55273728 nan 0.61409823 0.76682349 0.01569689 0.92776282 0. 0. 0. 0. 0.59972229 0. 0. 0.86700656 0.00175747 0.54181633 0.67419762 0. nan 0. 0.3252672 0.14789466 0. 0.9316378 0.88743565 0.97060047 0.33277846 0.15319149 0.25967892 0. ] | 13 |

Framework versions

  • Transformers 4.24.0
  • TensorFlow 2.9.2
  • Datasets 2.7.0
  • Tokenizers 0.13.2