metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: fashion-MNIST-vision
results: []
fashion-MNIST-vision
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3052
- Accuracy: 0.9113
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.0436 | 1.0 | 375 | 1.0302 | 0.7701 |
0.6703 | 2.0 | 750 | 0.6180 | 0.8448 |
0.5315 | 3.0 | 1125 | 0.5132 | 0.8509 |
0.4074 | 4.0 | 1500 | 0.4185 | 0.8671 |
0.3998 | 5.0 | 1875 | 0.3854 | 0.8705 |
0.3436 | 6.0 | 2250 | 0.3563 | 0.8778 |
0.3501 | 7.0 | 2625 | 0.3156 | 0.888 |
0.3284 | 8.0 | 3000 | 0.3145 | 0.8932 |
0.3123 | 9.0 | 3375 | 0.3207 | 0.888 |
0.2989 | 10.0 | 3750 | 0.3059 | 0.8939 |
0.259 | 11.0 | 4125 | 0.2933 | 0.898 |
0.2115 | 12.0 | 4500 | 0.3067 | 0.8931 |
0.2928 | 13.0 | 4875 | 0.2869 | 0.8966 |
0.2398 | 14.0 | 5250 | 0.2865 | 0.8989 |
0.2187 | 15.0 | 5625 | 0.2955 | 0.9005 |
0.2335 | 16.0 | 6000 | 0.2814 | 0.8998 |
0.2165 | 17.0 | 6375 | 0.2863 | 0.8998 |
0.2092 | 18.0 | 6750 | 0.2912 | 0.9022 |
0.2002 | 19.0 | 7125 | 0.2769 | 0.9025 |
0.163 | 20.0 | 7500 | 0.2906 | 0.9029 |
0.1795 | 21.0 | 7875 | 0.2832 | 0.9065 |
0.1568 | 22.0 | 8250 | 0.2908 | 0.8972 |
0.1815 | 23.0 | 8625 | 0.2913 | 0.9055 |
0.158 | 24.0 | 9000 | 0.2926 | 0.9057 |
0.1672 | 25.0 | 9375 | 0.2810 | 0.9056 |
0.1846 | 26.0 | 9750 | 0.2894 | 0.9032 |
0.1599 | 27.0 | 10125 | 0.3073 | 0.9025 |
0.1547 | 28.0 | 10500 | 0.2990 | 0.9045 |
0.1342 | 29.0 | 10875 | 0.2938 | 0.9093 |
0.1594 | 30.0 | 11250 | 0.2949 | 0.9058 |
0.1582 | 31.0 | 11625 | 0.3076 | 0.9037 |
0.1453 | 32.0 | 12000 | 0.2888 | 0.9086 |
0.1643 | 33.0 | 12375 | 0.3031 | 0.9074 |
0.1064 | 34.0 | 12750 | 0.3045 | 0.9046 |
0.1661 | 35.0 | 13125 | 0.2968 | 0.909 |
0.1345 | 36.0 | 13500 | 0.3027 | 0.9105 |
0.1359 | 37.0 | 13875 | 0.3123 | 0.9069 |
0.1261 | 38.0 | 14250 | 0.3079 | 0.9073 |
0.1347 | 39.0 | 14625 | 0.3095 | 0.9095 |
0.1364 | 40.0 | 15000 | 0.3020 | 0.9083 |
0.108 | 41.0 | 15375 | 0.2934 | 0.9117 |
0.1269 | 42.0 | 15750 | 0.3050 | 0.9125 |
0.1187 | 43.0 | 16125 | 0.3144 | 0.9103 |
0.11 | 44.0 | 16500 | 0.3073 | 0.9072 |
0.113 | 45.0 | 16875 | 0.3125 | 0.9109 |
0.0935 | 46.0 | 17250 | 0.3088 | 0.9129 |
0.1287 | 47.0 | 17625 | 0.3085 | 0.9139 |
0.1186 | 48.0 | 18000 | 0.3069 | 0.9118 |
0.1353 | 49.0 | 18375 | 0.3205 | 0.9117 |
0.1122 | 50.0 | 18750 | 0.3052 | 0.9113 |
Framework versions
- Transformers 4.40.1
- Pytorch 2.2.2
- Datasets 2.19.0
- Tokenizers 0.19.1