DUSt3R: Geometric 3D Vision Made Easy
@inproceedings{dust3r_cvpr24,
title={DUSt3R: Geometric 3D Vision Made Easy},
author={Shuzhe Wang and Vincent Leroy and Yohann Cabon and Boris Chidlovskii and Jerome Revaud},
booktitle = {CVPR},
year = {2024}
}
@misc{dust3r_arxiv23,
title={DUSt3R: Geometric 3D Vision Made Easy},
author={Shuzhe Wang and Vincent Leroy and Yohann Cabon and Boris Chidlovskii and Jerome Revaud},
year={2023},
eprint={2312.14132},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2312.14132},
}
License
The code is distributed under the CC BY-NC-SA 4.0 License. See LICENSE for more information.
For the checkpoints, make sure to agree to the license of all the public training datasets and base checkpoints we used, in addition to CC-BY-NC-SA 4.0. See section: Our Hyperparameters for details.
Model info
Gihub page: https://github.com/naver/dust3r/
Project page: https://dust3r.europe.naverlabs.com/
Modelname |
Training resolutions |
Head |
Encoder |
Decoder |
DUSt3R_ViTLarge_BaseDecoder_224_linear |
224x224 |
Linear |
ViT-L |
ViT-B |
How to use
First, install dust3r.
To load the model:
from dust3r.model import AsymmetricCroCo3DStereo
import torch
model = AsymmetricCroCo3DStereo.from_pretrained("naver/DUSt3R_ViTLarge_BaseDecoder_224_linear")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)