|
--- |
|
license: mit |
|
base_model: microsoft/deberta-v3-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: deberta-v3-base-orgs-v1 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# deberta-v3-base-orgs-v1 |
|
|
|
This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1186 |
|
- Precision: 0.8127 |
|
- Recall: 0.7735 |
|
- F1: 0.7927 |
|
- Accuracy: 0.9632 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 128 |
|
- eval_batch_size: 256 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.0706 | 0.7 | 600 | 0.1138 | 0.7590 | 0.7793 | 0.7690 | 0.9602 | |
|
| 0.0526 | 1.4 | 1200 | 0.1113 | 0.7942 | 0.7799 | 0.7870 | 0.9617 | |
|
| 0.0409 | 2.11 | 1800 | 0.1125 | 0.7911 | 0.7839 | 0.7875 | 0.9627 | |
|
| 0.0376 | 2.81 | 2400 | 0.1186 | 0.8127 | 0.7735 | 0.7927 | 0.9632 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0a0+32f93b1 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|