metadata
license: mit
tags:
- generated_from_trainer
model-index:
- name: rob-base-superqa
results:
- task:
type: question-answering
name: Question Answering
dataset:
name: adversarial_qa
type: adversarial_qa
config: adversarialQA
split: validation
metrics:
- name: Exact Match
type: exact_match
value: 43.8667
verified: true
- name: F1
type: f1
value: 55.135
verified: true
task:
- question-answering
datasets:
- squad_v2
- quoref
- adversarial_qa
- duorc
rob-base-superqa
This model is a fine-tuned version of roberta-base on the None dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 256
- total_eval_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06
- lr_scheduler_type: linear
- num_epochs: 3.0
Training results
Framework versions
- Transformers 4.21.1
- Pytorch 1.11.0a0+gita4c10ee
- Datasets 2.4.0
- Tokenizers 0.12.1