phobert-base-v2-ed
This model is a fine-tuned version of vinai/phobert-base-v2 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0455
- F1 Micro: 0.7302
- F1 Macro: 0.0774
- Recall Micro: 0.6299
- Precision Micro: 0.8683
- Recall Macro: 0.0745
- Precision Macro: 0.0806
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | F1 Micro | F1 Macro | Recall Micro | Precision Micro | Recall Macro | Precision Macro |
---|---|---|---|---|---|---|---|---|---|
0.0638 | 1.0 | 1526 | 0.0622 | 0.7114 | 0.0257 | 0.6218 | 0.8312 | 0.0271 | 0.0244 |
0.046 | 2.0 | 3052 | 0.0543 | 0.7112 | 0.0259 | 0.6021 | 0.8684 | 0.0263 | 0.0255 |
0.0462 | 3.0 | 4578 | 0.0494 | 0.7049 | 0.0716 | 0.5895 | 0.8764 | 0.0685 | 0.0803 |
0.0472 | 4.0 | 6104 | 0.0461 | 0.7326 | 0.0762 | 0.6402 | 0.8562 | 0.0724 | 0.0812 |
0.0228 | 5.0 | 7630 | 0.0455 | 0.7302 | 0.0774 | 0.6299 | 0.8683 | 0.0745 | 0.0806 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 6
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for nc33/phobert-base-v2-ed
Base model
vinai/phobert-base-v2