Create README.md for query2query model

#2
by rahilbathwal - opened
Files changed (1) hide show
  1. README.md +44 -0
README.md ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: sentence-similarity
3
+ tags:
4
+ - sentence-transformers
5
+ - feature-extraction
6
+ - sentence-similarity
7
+ ---
8
+
9
+ # {MODEL_NAME}
10
+
11
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps queries to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search over queries.
12
+
13
+ <!--- Describe your model here -->
14
+
15
+ ## Usage (Sentence-Transformers)
16
+
17
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
18
+
19
+ ```
20
+ pip install -U sentence-transformers
21
+ ```
22
+
23
+ Then you can use the model like this:
24
+
25
+ ```python
26
+ from sentence_transformers import SentenceTransformer
27
+ queries = ["flight cost from nyc to la", "ticket prices from nyc to la"]
28
+
29
+ model = SentenceTransformer('{MODEL_NAME}')
30
+ embeddings = model.encode(queries)
31
+ print(embeddings)
32
+ ```
33
+
34
+ ## Training
35
+ The model was trained for 1M steps with a batch size of 1024 at a learning rate of 2e-5 using a cosine learning rate scheduler with 10000 warmup steps.
36
+
37
+ ## Full Model Architecture
38
+ ```
39
+ SentenceTransformer(
40
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: DataParallel
41
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
42
+ (2): Normalize()
43
+ )
44
+ ```