gpt-oss-20b-finetune-mini
This is a fine-tuned version of openai/gpt-oss-20b using LoRA (Low-Rank Adaptation) on healthcare discharge data.
Model Details
- Base Model: openai/gpt-oss-20b
- Fine-tuning Method: LoRA (rank=32, alpha=64)
- Training Data: Healthcare discharge records (50,000 samples)
- Training Loss: 0.653
Usage
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
# Load base model and tokenizer
base_model = AutoModelForCausalLM.from_pretrained("openai/gpt-oss-20b")
tokenizer = AutoTokenizer.from_pretrained("openai/gpt-oss-20b")
# Load fine-tuned adapter
model = PeftModel.from_pretrained(base_model, "nessa272/gpt-oss-20b-finetune-mini")
# Use for inference
inputs = tokenizer("Your medical query here", return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=256)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
Training Configuration
- Learning Rate: 1e-5
- Batch Size: 4
- Epochs: 3
- Max Length: 128
- Gradient Accumulation Steps: 4
- GPUs: 4x H100
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for nessa272/gpt-oss-20b-finetune-mini
Base model
openai/gpt-oss-20b