|
--- |
|
tags: |
|
- fp8 |
|
- vllm |
|
license: other |
|
license_name: deepseek-license |
|
license_link: https://github.com/deepseek-ai/DeepSeek-Coder-V2/blob/main/LICENSE-MODEL |
|
--- |
|
|
|
# DeepSeek-Coder-V2-Instruct-FP8 |
|
|
|
## Model Overview |
|
- **Model Architecture:** DeepSeek-Coder-V2-Instruct |
|
- **Input:** Text |
|
- **Output:** Text |
|
- **Model Optimizations:** |
|
- **Weight quantization:** FP8 |
|
- **Activation quantization:** FP8 |
|
- **Intended Use Cases:** Intended for commercial and research use in English. Similarly to [Meta-Llama-3-7B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-7B-Instruct), this models is intended for assistant-like chat. |
|
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English. |
|
- **Release Date:** 7/22/2024 |
|
- **Version:** 1.0 |
|
- **License(s):** [deepseek-license](https://github.com/deepseek-ai/DeepSeek-Coder-V2/blob/main/LICENSE-MODEL) |
|
- **Model Developers:** Neural Magic |
|
|
|
Quantized version of [DeepSeek-Coder-V2-Instruct](https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Instruct). |
|
<!-- It achieves an average score of 73.19 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 73.48. --> |
|
It achieves an average score of 88.98 on the [HumanEval+](https://github.com/openai/human-eval?tab=readme-ov-file) benchmark, whereas the unquantized model achieves 87.63. |
|
|
|
### Model Optimizations |
|
|
|
This model was obtained by quantizing the weights and activations of [DeepSeek-Coder-V2-Instruct](https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Instruct) to FP8 data type, ready for inference with vLLM >= 0.5.2. |
|
This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%. In particular, this model can now be loaded and evaluated with only 4xH100 GPUs, as opposed to 8. |
|
|
|
Only the weights and activations of the linear operators within transformers blocks are quantized. Symmetric per-tensor quantization is applied, in which a single linear scaling maps the FP8 representations of the quantized weights and activations. |
|
[AutoFP8](https://github.com/neuralmagic/AutoFP8) is used for quantization with 512 sequences of UltraChat. |
|
|
|
## Deployment |
|
|
|
### Use with vLLM |
|
|
|
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. |
|
|
|
```python |
|
from transformers import AutoTokenizer |
|
from vllm import LLM, SamplingParams |
|
|
|
max_model_len, tp_size = 4096, 4 |
|
model_name = "neuralmagic/DeepSeek-Coder-V2-Instruct-FP8" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
llm = LLM(model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True, enforce_eager=True) |
|
sampling_params = SamplingParams(temperature=0.3, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id]) |
|
|
|
messages_list = [ |
|
[{"role": "user", "content": "Who are you? Please respond in pirate speak!"}], |
|
] |
|
|
|
prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list] |
|
|
|
outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params) |
|
|
|
generated_text = [output.outputs[0].text for output in outputs] |
|
print(generated_text) |
|
``` |
|
|
|
vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. |
|
|
|
## Creation |
|
|
|
This model was created by applying [AutoFP8 with calibration samples from ultrachat](https://github.com/neuralmagic/AutoFP8/blob/147fa4d9e1a90ef8a93f96fc7d9c33056ddc017a/example_dataset.py) with expert gates kept at original precision, as presented in the code snipet below. |
|
Notably, a custom device map had to be used, as the model was being incorrectly loaded otherwise. |
|
Although AutoFP8 was used for this particular model, Neural Magic is transitioning to using [llm-compressor](https://github.com/vllm-project/llm-compressor) which supports several quantization schemes and models not supported by AutoFP8. |
|
|
|
```python |
|
from datasets import load_dataset |
|
from transformers import AutoTokenizer |
|
|
|
from auto_fp8 import AutoFP8ForCausalLM, BaseQuantizeConfig |
|
|
|
pretrained_model_dir = "deepseek-ai/DeepSeek-Coder-V2-Instruct" |
|
quantized_model_dir = "DeepSeek-Coder-V2-Instruct-FP8" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir, use_fast=True, model_max_length=4096) |
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
ds = load_dataset("mgoin/ultrachat_2k", split="train_sft").select(range(512)) |
|
examples = [tokenizer.apply_chat_template(batch["messages"], tokenize=False) for batch in ds] |
|
examples = tokenizer(examples, padding=True, truncation=True, return_tensors="pt").to("cuda") |
|
|
|
quantize_config = BaseQuantizeConfig( |
|
quant_method="fp8", |
|
activation_scheme="static" |
|
ignore_patterns=["re:.*lm_head"], |
|
) |
|
|
|
device_map = { |
|
"model.embed_tokens": 0, |
|
"model.layers.0": 0, |
|
} |
|
for i in range(1, 60): |
|
device_map[f"model.layers.{i}"] = i//8 |
|
|
|
device_map["model.norm"] = 7 |
|
device_map["lm_head"] = 7 |
|
|
|
model = AutoFP8ForCausalLM.from_pretrained( |
|
pretrained_model_dir, quantize_config=quantize_config, device_map = device_map |
|
) |
|
model.quantize(examples) |
|
model.save_quantized(quantized_model_dir) |
|
``` |
|
|
|
## Evaluation |
|
|
|
The model was evaluated on the [HumanEval+](https://github.com/openai/human-eval?tab=readme-ov-file) benchmark with the [Neural Magic fork](https://github.com/neuralmagic/evalplus) of the [EvalPlus implementation of HumanEval+](https://github.com/evalplus/evalplus) and the [vLLM](https://docs.vllm.ai/en/stable/) engine, using the following command: |
|
``` |
|
python codegen/generate.py --model neuralmagic/DeepSeek-Coder-V2-Instruct-FP8 --temperature 0.2 --n_samples 50 --resume --root ~ --dataset humaneval |
|
python evalplus/sanitize.py ~/humaneval/neuralmagic--DeepSeek-Coder-V2-Instruct-FP8_vllm_temp_0.2 |
|
evalplus.evaluate --dataset humaneval --samples ~/humaneval/neuralmagic--DeepSeek-Coder-V2-Instruct-FP8_vllm_temp_0.2-sanitized |
|
``` |
|
|
|
### Accuracy |
|
|
|
#### HumanEval+ evaluation scores |
|
<table> |
|
<tr> |
|
<td><strong>Benchmark</strong> |
|
</td> |
|
<td><strong>DeepSeek-Coder-V2-Instruct</strong> |
|
</td> |
|
<td><strong>DeepSeek-Coder-V2-Instruct-FP8(this model)</strong> |
|
</td> |
|
<td><strong>Recovery</strong> |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>base pass@1 |
|
</td> |
|
<td>88.2 |
|
</td> |
|
<td>87.6 |
|
</td> |
|
<td>99.32% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>base pass@10 |
|
</td> |
|
<td>92.3 |
|
</td> |
|
<td>94.7 |
|
</td> |
|
<td>102.60% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>base+extra pass@1 |
|
</td> |
|
<td>83.3 |
|
</td> |
|
<td>83.2 |
|
</td> |
|
<td>99.88% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>base+extra pass@10 |
|
</td> |
|
<td>86.7 |
|
</td> |
|
<td>90.4 |
|
</td> |
|
<td>104.27% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td><strong>Average</strong> |
|
</td> |
|
<td><strong>87.63</strong> |
|
</td> |
|
<td><strong>88.98</strong> |
|
</td> |
|
<td><strong>101.5%</strong> |
|
</td> |
|
</tr> |
|
</table> |