|
--- |
|
tags: |
|
- fp8 |
|
- vllm |
|
license: other |
|
license_name: bigcode-openrail-m |
|
license_link: https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement |
|
--- |
|
|
|
# starcoder2-7b-FP8 |
|
|
|
## Model Overview |
|
- **Model Architecture:** starcoder2-7b |
|
- **Input:** Text |
|
- **Output:** Text |
|
- **Model Optimizations:** |
|
- **Weight quantization:** FP8 |
|
- **Activation quantization:** FP8 |
|
- **Intended Use Cases:** Intended for commercial and research use in English. |
|
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English. |
|
- **Release Date:** 8/1/2024 |
|
- **Version:** 1.0 |
|
- **License(s):** [bigcode-openrail-m](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement) |
|
- **Model Developers:** Neural Magic |
|
|
|
Quantized version of [starcoder2-7b](https://huggingface.co/bigcode/starcoder2-7b). |
|
<!-- It achieves an average score of 73.19 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 73.48. --> |
|
It achieves an average score of 39.30 on the [HumanEval+](https://github.com/openai/human-eval?tab=readme-ov-file) benchmark, whereas the unquantized model achieves 39.65. |
|
|
|
### Model Optimizations |
|
|
|
This model was obtained by quantizing the weights and activations of [starcoder2-7b](https://huggingface.co/bigcode/starcoder2-7b) to FP8 data type, ready for inference with vLLM >= 0.5.2. |
|
This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%. |
|
|
|
Only the weights and activations of the linear operators within transformers blocks are quantized. Symmetric per-tensor quantization is applied, in which a single linear scaling maps the FP8 representations of the quantized weights and activations. |
|
[AutoFP8](https://github.com/neuralmagic/AutoFP8) is used for quantization with 512 sequences of UltraChat. |
|
|
|
<!-- ## Deployment |
|
|
|
### Use with vLLM |
|
|
|
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. |
|
|
|
```python |
|
from vllm import LLM, SamplingParams |
|
from transformers import AutoTokenizer |
|
|
|
model_id = "neuralmagic/starcoder2-7b-FP8" |
|
|
|
sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
|
|
messages = [ |
|
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, |
|
{"role": "user", "content": "Who are you?"}, |
|
] |
|
|
|
prompts = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
|
|
llm = LLM(model=model_id, trust_remote_code=True, max_model_len=4096) |
|
|
|
outputs = llm.generate(prompts, sampling_params) |
|
|
|
generated_text = outputs[0].outputs[0].text |
|
print(generated_text) |
|
``` |
|
|
|
vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. --> |
|
|
|
## Creation |
|
|
|
This model was created by applying [LLM Compressor with calibration samples from UltraChat](https://github.com/vllm-project/llm-compressor/blob/sa/big_model_support/examples/big_model_offloading/big_model_w8a8_calibrate.py), as presented in the code snipet below. |
|
A slight modification to the code was made due to the parameters of the model. Running the below code will throw an index error, and simply replacing the erroneous line with ```max_quant_shape = param.shape[0]``` resolves the issue. |
|
|
|
```python |
|
import torch |
|
from datasets import load_dataset |
|
from transformers import AutoTokenizer |
|
|
|
from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot |
|
from llmcompressor.transformers.compression.helpers import ( |
|
calculate_offload_device_map, |
|
custom_offload_device_map, |
|
) |
|
|
|
recipe = """ |
|
quant_stage: |
|
quant_modifiers: |
|
QuantizationModifier: |
|
ignore: ["lm_head"] |
|
config_groups: |
|
group_0: |
|
weights: |
|
num_bits: 8 |
|
type: float |
|
strategy: tensor |
|
dynamic: false |
|
symmetric: true |
|
input_activations: |
|
num_bits: 8 |
|
type: float |
|
strategy: tensor |
|
dynamic: false |
|
symmetric: true |
|
targets: ["Linear"] |
|
""" |
|
|
|
model_stub = "bigcode/starcoder2-7b" |
|
model_name = model_stub.split("/")[-1] |
|
|
|
device_map = calculate_offload_device_map( |
|
model_stub, reserve_for_hessians=False, num_gpus=8, torch_dtype=torch.float16 |
|
) |
|
|
|
model = SparseAutoModelForCausalLM.from_pretrained( |
|
model_stub, torch_dtype=torch.float16, device_map=device_map |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(model_stub) |
|
|
|
output_dir = f"./{model_name}-FP8" |
|
|
|
DATASET_ID = "HuggingFaceH4/ultrachat_200k" |
|
DATASET_SPLIT = "train_sft" |
|
NUM_CALIBRATION_SAMPLES = 512 |
|
MAX_SEQUENCE_LENGTH = 4096 |
|
|
|
ds = load_dataset(DATASET_ID, split=DATASET_SPLIT) |
|
ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES)) |
|
|
|
def preprocess(example): |
|
return { |
|
"text": " ".join([msg["content"] for msg in example["messages"]]) |
|
} |
|
|
|
ds = ds.map(preprocess) |
|
|
|
def tokenize(sample): |
|
return tokenizer( |
|
sample["text"], |
|
padding=False, |
|
max_length=MAX_SEQUENCE_LENGTH, |
|
truncation=True, |
|
add_special_tokens=False, |
|
) |
|
|
|
ds = ds.map(tokenize, remove_columns=ds.column_names) |
|
|
|
oneshot( |
|
model=model, |
|
output_dir=output_dir, |
|
dataset=ds, |
|
recipe=recipe, |
|
max_seq_length=MAX_SEQUENCE_LENGTH, |
|
num_calibration_samples=NUM_CALIBRATION_SAMPLES, |
|
save_compressed=True, |
|
) |
|
``` |
|
|
|
## Evaluation |
|
|
|
The model was evaluated on the [HumanEval+](https://github.com/openai/human-eval?tab=readme-ov-file) benchmark with the [Neural Magic fork](https://github.com/neuralmagic/evalplus) of the [EvalPlus implementation of HumanEval+](https://github.com/evalplus/evalplus) and the [vLLM](https://docs.vllm.ai/en/stable/) engine, using the following command: |
|
``` |
|
python codegen/generate.py --model neuralmagic/starcoder2-7b-FP8 --temperature 0.2 --n_samples 50 --resume --root ~ --dataset humaneval |
|
python evalplus/sanitize.py ~/humaneval/neuralmagic--starcoder2-7b-FP8_vllm_temp_0.2 |
|
evalplus.evaluate --dataset humaneval --samples ~/humaneval/neuralmagic--starcoder2-7b-FP8_vllm_temp_0.2-sanitized |
|
``` |
|
|
|
### Accuracy |
|
|
|
#### HumanEval+ evaluation scores |
|
<table> |
|
<tr> |
|
<td><strong>Benchmark</strong> |
|
</td> |
|
<td><strong>starcoder2-7b</strong> |
|
</td> |
|
<td><strong>starcoder2-7b-FP8(this model)</strong> |
|
</td> |
|
<td><strong>Recovery</strong> |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>base pass@1 |
|
</td> |
|
<td>34.9 |
|
</td> |
|
<td>34.6 |
|
</td> |
|
<td>99.14% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>base pass@10 |
|
</td> |
|
<td>50.7 |
|
</td> |
|
<td>50.1 |
|
</td> |
|
<td>98.82% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>base+extra pass@1 |
|
</td> |
|
<td>30.0 |
|
</td> |
|
<td>30.3 |
|
</td> |
|
<td>101.00% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>base+extra pass@10 |
|
</td> |
|
<td>43.0 |
|
</td> |
|
<td>42.2 |
|
</td> |
|
<td>98.14% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td><strong>Average</strong> |
|
</td> |
|
<td><strong>39.65</strong> |
|
</td> |
|
<td><strong>39.30</strong> |
|
</td> |
|
<td><strong>99.27%</strong> |
|
</td> |
|
</tr> |
|
</table> |