Edit model card

Zephyr 7B β - DeepSparse

This repo contains model files for Zephyr 7B β optimized for DeepSparse, a CPU inference runtime for sparse models.

This model was quantized and pruned with SparseGPT, using SparseML.

Inference

Install DeepSparse LLM for fast inference on CPUs:

pip install deepsparse-nightly[llm]

Run in a Python pipeline:

from deepsparse import TextGeneration
prompt='### Instruction:\nWrite a Perl script that processes a log file and counts the occurrences of different HTTP status codes. The script should accept the log file path as a command-line argument and print the results to the console in descending order of frequency.\n\n### Response:\n'
model = TextGeneration(model_path="hf:neuralmagic/zephyr-7b-beta-pruned50-quant-ds")
print(model(prompt, max_new_tokens=200).generations[0].text)
"""
Here's a Perl script that meets the requirements:

use strict;
use warnings;

sub get_status_code {
    my ($status) = ();
    my ($match) = qr/\s*\d{3}\s*$/;
    return $1 if ($status =~ $match);
}

sub count_occurrences {
    my ($file) = shift;
    my (%counts) = ();
    open my $fh, '<', $file or die "Can't open $file: $!";
    while (my $line = <$fh>) {
        my ($status) = get_status_code($line);
        $counts{$status}++;
    }
    close $fh;
    return \%counts;
}

my ($file) = shift;
my (@codes) = qw(200 300 400 500);
my (@sorted) = ();

foreach my ($status, $count) (@codes, \%{ $status }->value()) {
    push @sorted, [$count, $status];
}

foreach my ($code, $freq) (@sorted) {
    print "$code\t$freq\n";
}

my ($results) = count_occurrences($file);
my (@sorted) = sort { $b[1] <=> $a[1] } @{$results};
foreach my ($code, $freq) (@sorted) {
    print "$code\t$freq\n";
}

"""

Prompt template

  ### Instruction:\n
  {prompt}
  ### Response:\n

Sparsification

For details on how this model was sparsified, see the recipe.yaml in this repo and follow the instructions below.

git clone https://github.com/neuralmagic/sparseml
pip install -e "sparseml[transformers]"
python sparseml/src/sparseml/transformers/sparsification/obcq/obcq.py HuggingFaceH4/zephyr-7b-beta open_platypus --recipe recipe.yaml --save True
python sparseml/src/sparseml/transformers/sparsification/obcq/export.py --task text-generation --model_path obcq_deployment 
cp deployment/model.onnx deployment/model-orig.onnx

Run this kv-cache injection to speed up the model at inference by caching the Key and Value states:

import os
import onnx
from sparseml.exporters.kv_cache_injector import KeyValueCacheInjector
input_file = "deployment/model-orig.onnx"
output_file = "deployment/model.onnx"
model = onnx.load(input_file, load_external_data=False)
model = KeyValueCacheInjector(model_path=os.path.dirname(input_file)).apply(model)
onnx.save(model, output_file)
print(f"Modified model saved to: {output_file}")

Follow the instructions on our One Shot With SparseML page for a step-by-step guide for performing one-shot quantization of large language models.

Slack

For further support, and discussions on these models and AI in general, join Neural Magic's Slack Community

Downloads last month
5
Inference Examples
Inference API (serverless) has been turned off for this model.

Model tree for neuralmagic/zephyr-7b-beta-pruned50-quant-ds

Quantized
(22)
this model