sahajBERT-NCC / README.md
Upload
hyperparameter tuning step 19519
e4ab342
|
raw
history blame
2.26 kB
metadata
language: bn
tags:
  - collaborative
  - bengali
  - SequenceClassification
license: apache-2.0
datasets: IndicGlue
metrics:
  - Loss
  - Accuracy
  - Precision
  - Recall

sahajBERT News Article Classification

Model description

sahajBERT fine-tuned for news article classification using the sna.bn split of IndicGlue.

The model is trained for classifying articles into 5 different classes:

Label id Label
0 kolkata
1 state
2 national
3 sports
4 entertainment
5 international

Intended uses & limitations

How to use

You can use this model directly with a pipeline for Sequence Classification:

from transformers import AlbertForSequenceClassification, TextClassificationPipeline, PreTrainedTokenizerFast

# Initialize tokenizer
tokenizer = PreTrainedTokenizerFast.from_pretrained("neuropark/sahajBERT-NCC")

# Initialize model
model = AlbertForSequenceClassification.from_pretrained("neuropark/sahajBERT-NCC")

# Initialize pipeline
pipeline = TextClassificationPipeline(tokenizer=tokenizer, model=model)

raw_text = "এই ইউনিয়নে ৩ টি মৌজা ও ১০ টি গ্রাম আছে ।" # Change me
output = pipeline(raw_text)

Limitations and bias

WIP

Training data

The model was initialized with pre-trained weights of sahajBERT at step 19519 and trained on the sna.bn split of IndicGlue.

Training procedure

Coming soon!

Eval results

Loss: 0.2477145493030548

Accuracy: 0.926293408929837

Macro F1: 0.9079785326650756

Recall: 0.926293408929837

Weighted F1: 0.9266428029354202

Macro Precision: 0.9109938492260489

Micro Precision: 0.926293408929837

Weighted Precision: 0.9288535478995414

Macro Recall: 0.9069095007692186

Micro Recall: 0.926293408929837

Weighted Recall: 0.926293408929837

BibTeX entry and citation info

Coming soon!