|
---
|
|
license: apache-2.0
|
|
model-index:
|
|
- name: Homer-v1.0-Qwen2.5-7B
|
|
results:
|
|
- task:
|
|
type: text-generation
|
|
name: Text Generation
|
|
dataset:
|
|
name: IFEval (0-Shot)
|
|
type: HuggingFaceH4/ifeval
|
|
args:
|
|
num_few_shot: 0
|
|
metrics:
|
|
- type: inst_level_strict_acc and prompt_level_strict_acc
|
|
value: 63.93
|
|
name: strict accuracy
|
|
source:
|
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=newsbang/Homer-v1.0-Qwen2.5-7B
|
|
name: Open LLM Leaderboard
|
|
- task:
|
|
type: text-generation
|
|
name: Text Generation
|
|
dataset:
|
|
name: BBH (3-Shot)
|
|
type: BBH
|
|
args:
|
|
num_few_shot: 3
|
|
metrics:
|
|
- type: acc_norm
|
|
value: 37.81
|
|
name: normalized accuracy
|
|
source:
|
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=newsbang/Homer-v1.0-Qwen2.5-7B
|
|
name: Open LLM Leaderboard
|
|
- task:
|
|
type: text-generation
|
|
name: Text Generation
|
|
dataset:
|
|
name: MATH Lvl 5 (4-Shot)
|
|
type: hendrycks/competition_math
|
|
args:
|
|
num_few_shot: 4
|
|
metrics:
|
|
- type: exact_match
|
|
value: 30.36
|
|
name: exact match
|
|
source:
|
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=newsbang/Homer-v1.0-Qwen2.5-7B
|
|
name: Open LLM Leaderboard
|
|
- task:
|
|
type: text-generation
|
|
name: Text Generation
|
|
dataset:
|
|
name: GPQA (0-shot)
|
|
type: Idavidrein/gpqa
|
|
args:
|
|
num_few_shot: 0
|
|
metrics:
|
|
- type: acc_norm
|
|
value: 9.62
|
|
name: acc_norm
|
|
source:
|
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=newsbang/Homer-v1.0-Qwen2.5-7B
|
|
name: Open LLM Leaderboard
|
|
- task:
|
|
type: text-generation
|
|
name: Text Generation
|
|
dataset:
|
|
name: MuSR (0-shot)
|
|
type: TAUR-Lab/MuSR
|
|
args:
|
|
num_few_shot: 0
|
|
metrics:
|
|
- type: acc_norm
|
|
value: 11.88
|
|
name: acc_norm
|
|
source:
|
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=newsbang/Homer-v1.0-Qwen2.5-7B
|
|
name: Open LLM Leaderboard
|
|
- task:
|
|
type: text-generation
|
|
name: Text Generation
|
|
dataset:
|
|
name: MMLU-PRO (5-shot)
|
|
type: TIGER-Lab/MMLU-Pro
|
|
config: main
|
|
split: test
|
|
args:
|
|
num_few_shot: 5
|
|
metrics:
|
|
- type: acc
|
|
value: 39.27
|
|
name: accuracy
|
|
source:
|
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=newsbang/Homer-v1.0-Qwen2.5-7B
|
|
name: Open LLM Leaderboard
|
|
---
|
|
|
|
|
|
Homer-v1.0-Qwen2.5-7B is a fine-tuned version of Qwen2.5-7B using a large amount of instruction-based data.
|
|
We released the math subset of our dataset (https://huggingface.co/datasets/newsbang/homer_math_v0.1), and we also analyzed the data leakage of current open-source math datasets on the benchmark (https://huggingface.co/datasets/newsbang/math_benbench_data_leak_analysis).
|
|
|
|
|
|
### How to use
|
|
```python
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
model_name = "newsbang/Homer-v1.0-Qwen2.5-7B"
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
model_name,
|
|
torch_dtype="auto",
|
|
device_map="auto"
|
|
)
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
|
messages = [
|
|
{"role": "system", "content": "You are a very helpful assistant."},
|
|
{"role": "user", "content": "Hello"}
|
|
]
|
|
text = tokenizer.apply_chat_template(
|
|
messages,
|
|
tokenize=False,
|
|
add_generation_prompt=True
|
|
)
|
|
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
|
|
|
generated_ids = model.generate(
|
|
**model_inputs,
|
|
max_new_tokens=512
|
|
)
|
|
generated_ids = [
|
|
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
|
]
|
|
|
|
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
|
``` |
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_newsbang__Homer-v1.0-Qwen2.5-7B) |
|
|
|
| Metric |Value| |
|
|-------------------|----:| |
|
|Avg. |32.15| |
|
|IFEval (0-Shot) |63.93| |
|
|BBH (3-Shot) |37.81| |
|
|MATH Lvl 5 (4-Shot)|30.36| |
|
|GPQA (0-shot) | 9.62| |
|
|MuSR (0-shot) |11.88| |
|
|MMLU-PRO (5-shot) |39.27| |
|
|
|
|