ngocquangt2k46's picture
End of training
ae2ec75 verified
metadata
library_name: peft
base_model: HuggingFaceM4/tiny-random-LlamaForCausalLM
tags:
  - axolotl
  - generated_from_trainer
model-index:
  - name: 5de7b49b-4dff-4a17-9193-6d28cb60bf62
    results: []

Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: HuggingFaceM4/tiny-random-LlamaForCausalLM
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 0978bbd0f6e05684_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/0978bbd0f6e05684_train_data.json
  type:
    field_input: facts
    field_instruction: assertion/question
    field_output: label
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
device_map: auto
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 32
gradient_checkpointing: false
group_by_length: false
hub_model_id: ngocquangt2k46/5de7b49b-4dff-4a17-9193-6d28cb60bf62
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- v_proj
lr_scheduler: cosine
max_memory:
  0: 130GiB
  1: 130GiB
max_steps: 20
micro_batch_size: 2
mlflow_experiment_name: /tmp/0978bbd0f6e05684_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
quantization_config:
  llm_int8_enable_fp32_cpu_offload: false
  load_in_8bit: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 4056
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 5de7b49b-4dff-4a17-9193-6d28cb60bf62
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 5de7b49b-4dff-4a17-9193-6d28cb60bf62
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

5de7b49b-4dff-4a17-9193-6d28cb60bf62

This model is a fine-tuned version of HuggingFaceM4/tiny-random-LlamaForCausalLM on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 10.4260

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 32
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 20

Training results

Training Loss Epoch Step Validation Loss
10.4071 0.0057 1 10.4358
10.4297 0.0283 5 10.4348
10.4151 0.0566 10 10.4315
10.4257 0.0849 15 10.4272
10.421 0.1132 20 10.4260

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1