Edit model card

CH-Phi3m4k

This model is a fine-tuned version of microsoft/Phi-3-mini-4k-instruct on an casehold/casehold dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5304

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 1
  • seed: 342
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Validation F1
2.0053 0.1422 200 1.8927 0.722
1.6481 0.2844 400 1.6065 0.732
1.5653 0.4267 600 1.5864 0.746
1.5516 0.5689 800 1.5762 0.758
1.537 0.7111 1000 1.5689 0.768
1.5318 0.8533 1200 1.5637 0.772
1.5249 0.9956 1400 1.5595 0.774
1.5208 1.1378 1600 1.5550 0.768
1.5234 1.28 1800 1.5511 0.778
1.5099 1.4222 2000 1.5480 0.774
1.5144 1.5644 2200 1.5448 0.774
1.5139 1.7067 2400 1.5424 0.776
1.5013 1.8489 2600 1.5395 0.778
1.502 1.9911 2800 1.5377 0.770
1.4979 2.1333 3000 1.5358 0.768
1.491 2.2756 3200 1.5338 0.768
1.5025 2.4178 3400 1.5318 0.772
1.4933 2.56 3600 1.5304 0.772

Framework versions

  • PEFT 0.11.1
  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
0
Safetensors
Model size
2.07B params
Tensor type
F32
BF16
U8
Inference API
Unable to determine this model鈥檚 pipeline type. Check the docs .

Model tree for nguyenkhanh87/CH-Phi3m4k

Adapter
(285)
this model