Edit model card

Built with Axolotl

See axolotl config

axolotl version: 0.4.1

base_model: NousResearch/Meta-Llama-3-8B-Instruct
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false
load_in_4bit: false
strict: false
 
datasets:
  - path: /workspace/axolotl/vinh/PAL/input_output_llama3.json
    type: input_output
dataset_prepared_path:
val_set_size: 0.05
eval_sample_packing: false
output_dir: /workspace/axolotl/vinh/NousResearch_Meta-Llama-3-8B-Instruct-lora-2024-07-01-14-28-39

sequence_len: 2048
sample_packing: false
pad_to_sequence_len: false

adapter: lora
lora_model_dir: 
lora_r: 64
lora_alpha: 128
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 128
micro_batch_size: 1
num_epochs: 3
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 2e-4

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention: 
flash_attention: true
s2_attention:

loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3

warmup_steps: 10
evals_per_epoch: 10
eval_table_size:
eval_max_new_tokens: 512
saves_per_epoch: 2
save_total_limit: 20
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
   pad_token: <|end_of_text|>

workspace/axolotl/vinh/NousResearch_Meta-Llama-3-8B-Instruct-lora-2024-07-01-14-28-39

This model is a fine-tuned version of NousResearch/Meta-Llama-3-8B-Instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0392

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 128
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
0.5339 0.0095 1 0.5036
0.0879 0.1043 11 0.0813
0.0582 0.2086 22 0.0629
0.06 0.3129 33 0.0566
0.0593 0.4172 44 0.0514
0.054 0.5214 55 0.0483
0.0459 0.6257 66 0.0469
0.0397 0.7300 77 0.0460
0.0453 0.8343 88 0.0449
0.04 0.9386 99 0.0429
0.0338 1.0429 110 0.0418
0.0322 1.1472 121 0.0422
0.0275 1.2515 132 0.0416
0.0322 1.3558 143 0.0416
0.0266 1.4600 154 0.0404
0.0249 1.5643 165 0.0397
0.0292 1.6686 176 0.0393
0.031 1.7729 187 0.0385
0.0265 1.8772 198 0.0375
0.0273 1.9815 209 0.0375
0.0175 2.0858 220 0.0377
0.0168 2.1901 231 0.0396
0.0182 2.2943 242 0.0403
0.0201 2.3986 253 0.0397
0.0138 2.5029 264 0.0393
0.0173 2.6072 275 0.0392
0.0186 2.7115 286 0.0392
0.0209 2.8158 297 0.0392
0.0185 2.9201 308 0.0392

Framework versions

  • PEFT 0.11.1
  • Transformers 4.41.1
  • Pytorch 2.1.2+cu118
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for nguyenthanhdo/ViMath-PAL-Llama-3-8B-LORA

Adapter
(93)
this model