nickprock's picture
Update README.md
35c754c
|
raw
history blame
6.43 kB
metadata
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - feature-extraction
  - sentence-similarity
  - transformers
  - mteb
license: apache-2.0
datasets:
  - unicamp-dl/mmarco
language:
  - it
library_name: sentence-transformers
model-index:
  - name: mmarco-sentence-flare-it
    results:
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (it)
          config: it
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 22.299932750504368
          - type: f1
            value: 20.147804322480262
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (it)
          config: it
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 27.40753194351042
          - type: f1
            value: 25.187141587127705
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (it)
          config: it
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 30.67175493186678
          - type: cos_sim_spearman
            value: 37.92638638971281
          - type: euclidean_pearson
            value: 37.47072224334179
          - type: euclidean_spearman
            value: 39.23036609148336
          - type: manhattan_pearson
            value: 42.92657347688227
          - type: manhattan_spearman
            value: 43.93955531904934

mmarco-sentence-flare-it

This is a sentence-transformers model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.

Usage (Sentence-Transformers)

Using this model becomes easy when you have sentence-transformers installed:

pip install -U sentence-transformers

Then you can use the model like this:

from sentence_transformers import SentenceTransformer, util

query = "Quante persone vivono a Londra?"
docs = ["A Londra vivono circa 9 milioni di persone", "Londra è conosciuta per il suo quartiere finanziario"]

#Load the model
model = SentenceTransformer('nickprock/mmarco-sentence-flare-it')

#Encode query and documents
query_emb = model.encode(query)
doc_emb = model.encode(docs)

#Compute dot score between query and all document embeddings
scores = util.dot_score(query_emb, doc_emb)[0].cpu().tolist()

#Combine docs & scores
doc_score_pairs = list(zip(docs, scores))

#Sort by decreasing score
doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)

#Output passages & scores
for doc, score in doc_score_pairs:
    print(score, doc)

Usage (HuggingFace Transformers)

Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.

from transformers import AutoTokenizer, AutoModel
import torch

#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output.last_hidden_state
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


#Encode text
def encode(texts):
    # Tokenize sentences
    encoded_input = tokenizer(texts, padding=True, truncation=True, return_tensors='pt')

    # Compute token embeddings
    with torch.no_grad():
        model_output = model(**encoded_input, return_dict=True)

    # Perform pooling
    embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

    return embeddings


# Sentences we want sentence embeddings for
query = "Quante persone vivono a Londra?"
docs = ["A Londra vivono circa 9 milioni di persone", "Londra è conosciuta per il suo quartiere finanziario"]

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained("nickprock/mmarco-sentence-flare-it")
model = AutoModel.from_pretrained("nickprock/mmarco-sentence-flare-it")

#Encode query and docs
query_emb = encode(query)
doc_emb = encode(docs)

#Compute dot score between query and all document embeddings
scores = torch.mm(query_emb, doc_emb.transpose(0, 1))[0].cpu().tolist()

#Combine docs & scores
doc_score_pairs = list(zip(docs, scores))

#Sort by decreasing score
doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)

#Output passages & scores
print("Query:", query)
for doc, score in doc_score_pairs:
    print(score, doc)

Evaluation Results

For an automated evaluation of this model, see the Sentence Embeddings Benchmark: https://seb.sbert.net

Training

The model was trained with the parameters:

DataLoader:

torch.utils.data.dataloader.DataLoader of length 7500 with parameters:

{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}

Loss:

sentence_transformers.losses.TripletLoss.TripletLoss with parameters:

{'distance_metric': 'TripletDistanceMetric.EUCLIDEAN', 'triplet_margin': 5}

Parameters of the fit()-Method:

{
    "epochs": 10,
    "evaluation_steps": 500,
    "evaluator": "sentence_transformers.evaluation.TripletEvaluator.TripletEvaluator",
    "max_grad_norm": 1,
    "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
    "optimizer_params": {
        "lr": 2e-05
    },
    "scheduler": "WarmupLinear",
    "steps_per_epoch": 1500,
    "warmup_steps": 7500,
    "weight_decay": 0.01
}

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)

Citing & Authors

More information about the base model here