nickprock's picture
Update README.md
4eb357a
|
raw
history blame
75.7 kB
metadata
tags:
  - mteb
model-index:
  - name: mmarco-sentence-flare-it
    results:
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (en)
          config: en
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 66.28358208955223
          - type: ap
            value: 28.583712225399804
          - type: f1
            value: 59.773975520814645
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (de)
          config: de
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 49.28265524625267
          - type: ap
            value: 70.12705711793366
          - type: f1
            value: 46.9152621753021
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (en-ext)
          config: en-ext
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 61.13943028485757
          - type: ap
            value: 15.393299134540122
          - type: f1
            value: 50.441499676740754
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (ja)
          config: ja
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 44.85010706638115
          - type: ap
            value: 11.24959111812915
          - type: f1
            value: 38.4896899038441
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_polarity
          name: MTEB AmazonPolarityClassification
          config: default
          split: test
          revision: e2d317d38cd51312af73b3d32a06d1a08b442046
        metrics:
          - type: accuracy
            value: 53.786350000000006
          - type: ap
            value: 52.711619488611895
          - type: f1
            value: 52.08639681443221
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (en)
          config: en
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 22.954
          - type: f1
            value: 20.895324325359304
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (de)
          config: de
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 22.016
          - type: f1
            value: 20.141551433471214
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (es)
          config: es
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 23.842000000000002
          - type: f1
            value: 22.360764368564414
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (fr)
          config: fr
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 24.534000000000002
          - type: f1
            value: 23.348432665500937
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (ja)
          config: ja
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 20.183999999999997
          - type: f1
            value: 17.025753479408394
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (zh)
          config: zh
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 20.226000000000003
          - type: f1
            value: 17.949454130689396
      - task:
          type: Retrieval
        dataset:
          type: arguana
          name: MTEB ArguAna
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.64
          - type: map_at_10
            value: 1.109
          - type: map_at_100
            value: 1.214
          - type: map_at_1000
            value: 1.273
          - type: map_at_3
            value: 0.936
          - type: map_at_5
            value: 1.032
          - type: mrr_at_1
            value: 0.64
          - type: mrr_at_10
            value: 1.109
          - type: mrr_at_100
            value: 1.214
          - type: mrr_at_1000
            value: 1.273
          - type: mrr_at_3
            value: 0.936
          - type: mrr_at_5
            value: 1.032
          - type: ndcg_at_1
            value: 0.64
          - type: ndcg_at_10
            value: 1.401
          - type: ndcg_at_100
            value: 2.106
          - type: ndcg_at_1000
            value: 4.484
          - type: ndcg_at_3
            value: 1.042
          - type: ndcg_at_5
            value: 1.217
          - type: precision_at_1
            value: 0.64
          - type: precision_at_10
            value: 0.23500000000000001
          - type: precision_at_100
            value: 0.061
          - type: precision_at_1000
            value: 0.027
          - type: precision_at_3
            value: 0.44999999999999996
          - type: precision_at_5
            value: 0.356
          - type: recall_at_1
            value: 0.64
          - type: recall_at_10
            value: 2.347
          - type: recall_at_100
            value: 6.117
          - type: recall_at_1000
            value: 26.671
          - type: recall_at_3
            value: 1.351
          - type: recall_at_5
            value: 1.778
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-p2p
          name: MTEB ArxivClusteringP2P
          config: default
          split: test
          revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
        metrics:
          - type: v_measure
            value: 10.337297492580117
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-s2s
          name: MTEB ArxivClusteringS2S
          config: default
          split: test
          revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
        metrics:
          - type: v_measure
            value: 8.41067718068448
      - task:
          type: Reranking
        dataset:
          type: mteb/askubuntudupquestions-reranking
          name: MTEB AskUbuntuDupQuestions
          config: default
          split: test
          revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
        metrics:
          - type: map
            value: 39.45372039138711
          - type: mrr
            value: 49.48005979861936
      - task:
          type: STS
        dataset:
          type: mteb/biosses-sts
          name: MTEB BIOSSES
          config: default
          split: test
          revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
        metrics:
          - type: cos_sim_pearson
            value: 2.1060056434908527
          - type: cos_sim_spearman
            value: -6.396531291473412
          - type: euclidean_pearson
            value: -1.0319749731423296
          - type: euclidean_spearman
            value: -5.283855335987313
          - type: manhattan_pearson
            value: -5.66609061890471
          - type: manhattan_spearman
            value: -7.173055009189482
      - task:
          type: Classification
        dataset:
          type: mteb/banking77
          name: MTEB Banking77Classification
          config: default
          split: test
          revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
        metrics:
          - type: accuracy
            value: 17.435064935064933
          - type: f1
            value: 15.631665237965379
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-p2p
          name: MTEB BiorxivClusteringP2P
          config: default
          split: test
          revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
        metrics:
          - type: v_measure
            value: 4.01285243931824
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-s2s
          name: MTEB BiorxivClusteringS2S
          config: default
          split: test
          revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
        metrics:
          - type: v_measure
            value: 3.0046123718115685
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackAndroidRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.001
          - type: map_at_10
            value: 0.023
          - type: map_at_100
            value: 0.034999999999999996
          - type: map_at_1000
            value: 0.042
          - type: map_at_3
            value: 0.001
          - type: map_at_5
            value: 0.001
          - type: mrr_at_1
            value: 0.14300000000000002
          - type: mrr_at_10
            value: 0.173
          - type: mrr_at_100
            value: 0.203
          - type: mrr_at_1000
            value: 0.216
          - type: mrr_at_3
            value: 0.14300000000000002
          - type: mrr_at_5
            value: 0.14300000000000002
          - type: ndcg_at_1
            value: 0.14300000000000002
          - type: ndcg_at_10
            value: 0.11
          - type: ndcg_at_100
            value: 0.174
          - type: ndcg_at_1000
            value: 0.526
          - type: ndcg_at_3
            value: 0.067
          - type: ndcg_at_5
            value: 0.049
          - type: precision_at_1
            value: 0.14300000000000002
          - type: precision_at_10
            value: 0.056999999999999995
          - type: precision_at_100
            value: 0.02
          - type: precision_at_1000
            value: 0.01
          - type: precision_at_3
            value: 0.048
          - type: precision_at_5
            value: 0.029
          - type: recall_at_1
            value: 0.001
          - type: recall_at_10
            value: 0.216
          - type: recall_at_100
            value: 0.629
          - type: recall_at_1000
            value: 3.1940000000000004
          - type: recall_at_3
            value: 0.001
          - type: recall_at_5
            value: 0.001
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackEnglishRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0
          - type: map_at_10
            value: 0.04
          - type: map_at_100
            value: 0.058
          - type: map_at_1000
            value: 0.065
          - type: map_at_3
            value: 0.033
          - type: map_at_5
            value: 0.04
          - type: mrr_at_1
            value: 0
          - type: mrr_at_10
            value: 0.066
          - type: mrr_at_100
            value: 0.099
          - type: mrr_at_1000
            value: 0.11
          - type: mrr_at_3
            value: 0.053
          - type: mrr_at_5
            value: 0.066
          - type: ndcg_at_1
            value: 0
          - type: ndcg_at_10
            value: 0.062
          - type: ndcg_at_100
            value: 0.182
          - type: ndcg_at_1000
            value: 0.494
          - type: ndcg_at_3
            value: 0.055
          - type: ndcg_at_5
            value: 0.066
          - type: precision_at_1
            value: 0
          - type: precision_at_10
            value: 0.019
          - type: precision_at_100
            value: 0.012
          - type: precision_at_1000
            value: 0.006
          - type: precision_at_3
            value: 0.042
          - type: precision_at_5
            value: 0.038
          - type: recall_at_1
            value: 0
          - type: recall_at_10
            value: 0.1
          - type: recall_at_100
            value: 0.626
          - type: recall_at_1000
            value: 3.012
          - type: recall_at_3
            value: 0.068
          - type: recall_at_5
            value: 0.1
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGamingRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0
          - type: map_at_10
            value: 0.01
          - type: map_at_100
            value: 0.019
          - type: map_at_1000
            value: 0.026
          - type: map_at_3
            value: 0
          - type: map_at_5
            value: 0
          - type: mrr_at_1
            value: 0
          - type: mrr_at_10
            value: 0.01
          - type: mrr_at_100
            value: 0.019
          - type: mrr_at_1000
            value: 0.027
          - type: mrr_at_3
            value: 0
          - type: mrr_at_5
            value: 0
          - type: ndcg_at_1
            value: 0
          - type: ndcg_at_10
            value: 0.022000000000000002
          - type: ndcg_at_100
            value: 0.09
          - type: ndcg_at_1000
            value: 0.35500000000000004
          - type: ndcg_at_3
            value: 0
          - type: ndcg_at_5
            value: 0
          - type: precision_at_1
            value: 0
          - type: precision_at_10
            value: 0.006
          - type: precision_at_100
            value: 0.004
          - type: precision_at_1000
            value: 0.003
          - type: precision_at_3
            value: 0
          - type: precision_at_5
            value: 0
          - type: recall_at_1
            value: 0
          - type: recall_at_10
            value: 0.063
          - type: recall_at_100
            value: 0.439
          - type: recall_at_1000
            value: 2.576
          - type: recall_at_3
            value: 0
          - type: recall_at_5
            value: 0
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGisRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.22599999999999998
          - type: map_at_10
            value: 0.22599999999999998
          - type: map_at_100
            value: 0.23500000000000001
          - type: map_at_1000
            value: 0.241
          - type: map_at_3
            value: 0.22599999999999998
          - type: map_at_5
            value: 0.22599999999999998
          - type: mrr_at_1
            value: 0.22599999999999998
          - type: mrr_at_10
            value: 0.22599999999999998
          - type: mrr_at_100
            value: 0.23800000000000002
          - type: mrr_at_1000
            value: 0.244
          - type: mrr_at_3
            value: 0.22599999999999998
          - type: mrr_at_5
            value: 0.22599999999999998
          - type: ndcg_at_1
            value: 0.22599999999999998
          - type: ndcg_at_10
            value: 0.22599999999999998
          - type: ndcg_at_100
            value: 0.317
          - type: ndcg_at_1000
            value: 0.584
          - type: ndcg_at_3
            value: 0.22599999999999998
          - type: ndcg_at_5
            value: 0.22599999999999998
          - type: precision_at_1
            value: 0.22599999999999998
          - type: precision_at_10
            value: 0.023
          - type: precision_at_100
            value: 0.009000000000000001
          - type: precision_at_1000
            value: 0.004
          - type: precision_at_3
            value: 0.075
          - type: precision_at_5
            value: 0.045
          - type: recall_at_1
            value: 0.22599999999999998
          - type: recall_at_10
            value: 0.22599999999999998
          - type: recall_at_100
            value: 0.732
          - type: recall_at_1000
            value: 2.951
          - type: recall_at_3
            value: 0.22599999999999998
          - type: recall_at_5
            value: 0.22599999999999998
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackMathematicaRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.062
          - type: map_at_10
            value: 0.062
          - type: map_at_100
            value: 0.08800000000000001
          - type: map_at_1000
            value: 0.1
          - type: map_at_3
            value: 0.062
          - type: map_at_5
            value: 0.062
          - type: mrr_at_1
            value: 0.124
          - type: mrr_at_10
            value: 0.124
          - type: mrr_at_100
            value: 0.173
          - type: mrr_at_1000
            value: 0.191
          - type: mrr_at_3
            value: 0.124
          - type: mrr_at_5
            value: 0.124
          - type: ndcg_at_1
            value: 0.124
          - type: ndcg_at_10
            value: 0.076
          - type: ndcg_at_100
            value: 0.27
          - type: ndcg_at_1000
            value: 0.7849999999999999
          - type: ndcg_at_3
            value: 0.076
          - type: ndcg_at_5
            value: 0.076
          - type: precision_at_1
            value: 0.124
          - type: precision_at_10
            value: 0.012
          - type: precision_at_100
            value: 0.02
          - type: precision_at_1000
            value: 0.009000000000000001
          - type: precision_at_3
            value: 0.041
          - type: precision_at_5
            value: 0.025
          - type: recall_at_1
            value: 0.062
          - type: recall_at_10
            value: 0.062
          - type: recall_at_100
            value: 0.9119999999999999
          - type: recall_at_1000
            value: 4.809
          - type: recall_at_3
            value: 0.062
          - type: recall_at_5
            value: 0.062
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackPhysicsRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0
          - type: map_at_10
            value: 0.043
          - type: map_at_100
            value: 0.061
          - type: map_at_1000
            value: 0.06999999999999999
          - type: map_at_3
            value: 0
          - type: map_at_5
            value: 0.043
          - type: mrr_at_1
            value: 0
          - type: mrr_at_10
            value: 0.043
          - type: mrr_at_100
            value: 0.06899999999999999
          - type: mrr_at_1000
            value: 0.079
          - type: mrr_at_3
            value: 0
          - type: mrr_at_5
            value: 0.043
          - type: ndcg_at_1
            value: 0
          - type: ndcg_at_10
            value: 0.079
          - type: ndcg_at_100
            value: 0.22599999999999998
          - type: ndcg_at_1000
            value: 0.5579999999999999
          - type: ndcg_at_3
            value: 0
          - type: ndcg_at_5
            value: 0.079
          - type: precision_at_1
            value: 0
          - type: precision_at_10
            value: 0.019
          - type: precision_at_100
            value: 0.013
          - type: precision_at_1000
            value: 0.005
          - type: precision_at_3
            value: 0
          - type: precision_at_5
            value: 0.038
          - type: recall_at_1
            value: 0
          - type: recall_at_10
            value: 0.192
          - type: recall_at_100
            value: 0.918
          - type: recall_at_1000
            value: 3.5909999999999997
          - type: recall_at_3
            value: 0
          - type: recall_at_5
            value: 0.192
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackProgrammersRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0
          - type: map_at_10
            value: 0.04
          - type: map_at_100
            value: 0.044000000000000004
          - type: map_at_1000
            value: 0.052
          - type: map_at_3
            value: 0.038
          - type: map_at_5
            value: 0.038
          - type: mrr_at_1
            value: 0
          - type: mrr_at_10
            value: 0.054
          - type: mrr_at_100
            value: 0.07200000000000001
          - type: mrr_at_1000
            value: 0.084
          - type: mrr_at_3
            value: 0.038
          - type: mrr_at_5
            value: 0.038
          - type: ndcg_at_1
            value: 0
          - type: ndcg_at_10
            value: 0.067
          - type: ndcg_at_100
            value: 0.10300000000000001
          - type: ndcg_at_1000
            value: 0.488
          - type: ndcg_at_3
            value: 0.056999999999999995
          - type: ndcg_at_5
            value: 0.056999999999999995
          - type: precision_at_1
            value: 0
          - type: precision_at_10
            value: 0.023
          - type: precision_at_100
            value: 0.006999999999999999
          - type: precision_at_1000
            value: 0.006
          - type: precision_at_3
            value: 0.038
          - type: precision_at_5
            value: 0.023
          - type: recall_at_1
            value: 0
          - type: recall_at_10
            value: 0.128
          - type: recall_at_100
            value: 0.248
          - type: recall_at_1000
            value: 3.36
          - type: recall_at_3
            value: 0.11399999999999999
          - type: recall_at_5
            value: 0.11399999999999999
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackStatsRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0
          - type: map_at_10
            value: 0
          - type: map_at_100
            value: 0.013999999999999999
          - type: map_at_1000
            value: 0.023
          - type: map_at_3
            value: 0
          - type: map_at_5
            value: 0
          - type: mrr_at_1
            value: 0
          - type: mrr_at_10
            value: 0
          - type: mrr_at_100
            value: 0.03
          - type: mrr_at_1000
            value: 0.045
          - type: mrr_at_3
            value: 0
          - type: mrr_at_5
            value: 0
          - type: ndcg_at_1
            value: 0
          - type: ndcg_at_10
            value: 0
          - type: ndcg_at_100
            value: 0.066
          - type: ndcg_at_1000
            value: 0.445
          - type: ndcg_at_3
            value: 0
          - type: ndcg_at_5
            value: 0
          - type: precision_at_1
            value: 0
          - type: precision_at_10
            value: 0
          - type: precision_at_100
            value: 0.005
          - type: precision_at_1000
            value: 0.005
          - type: precision_at_3
            value: 0
          - type: precision_at_5
            value: 0
          - type: recall_at_1
            value: 0
          - type: recall_at_10
            value: 0
          - type: recall_at_100
            value: 0.24
          - type: recall_at_1000
            value: 3.1559999999999997
          - type: recall_at_3
            value: 0
          - type: recall_at_5
            value: 0
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackTexRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0
          - type: map_at_10
            value: 0
          - type: map_at_100
            value: 0.006999999999999999
          - type: map_at_1000
            value: 0.012
          - type: map_at_3
            value: 0
          - type: map_at_5
            value: 0
          - type: mrr_at_1
            value: 0
          - type: mrr_at_10
            value: 0
          - type: mrr_at_100
            value: 0.011000000000000001
          - type: mrr_at_1000
            value: 0.018000000000000002
          - type: mrr_at_3
            value: 0
          - type: mrr_at_5
            value: 0
          - type: ndcg_at_1
            value: 0
          - type: ndcg_at_10
            value: 0
          - type: ndcg_at_100
            value: 0.055
          - type: ndcg_at_1000
            value: 0.254
          - type: ndcg_at_3
            value: 0
          - type: ndcg_at_5
            value: 0
          - type: precision_at_1
            value: 0
          - type: precision_at_10
            value: 0
          - type: precision_at_100
            value: 0.004
          - type: precision_at_1000
            value: 0.003
          - type: precision_at_3
            value: 0
          - type: precision_at_5
            value: 0
          - type: recall_at_1
            value: 0
          - type: recall_at_10
            value: 0
          - type: recall_at_100
            value: 0.27599999999999997
          - type: recall_at_1000
            value: 1.828
          - type: recall_at_3
            value: 0
          - type: recall_at_5
            value: 0
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackUnixRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0
          - type: map_at_10
            value: 0.023
          - type: map_at_100
            value: 0.031
          - type: map_at_1000
            value: 0.038
          - type: map_at_3
            value: 0
          - type: map_at_5
            value: 0.023
          - type: mrr_at_1
            value: 0
          - type: mrr_at_10
            value: 0.023
          - type: mrr_at_100
            value: 0.039
          - type: mrr_at_1000
            value: 0.048
          - type: mrr_at_3
            value: 0
          - type: mrr_at_5
            value: 0.023
          - type: ndcg_at_1
            value: 0
          - type: ndcg_at_10
            value: 0.04
          - type: ndcg_at_100
            value: 0.133
          - type: ndcg_at_1000
            value: 0.395
          - type: ndcg_at_3
            value: 0
          - type: ndcg_at_5
            value: 0.04
          - type: precision_at_1
            value: 0
          - type: precision_at_10
            value: 0.009000000000000001
          - type: precision_at_100
            value: 0.009000000000000001
          - type: precision_at_1000
            value: 0.004
          - type: precision_at_3
            value: 0
          - type: precision_at_5
            value: 0.019
          - type: recall_at_1
            value: 0
          - type: recall_at_10
            value: 0.093
          - type: recall_at_100
            value: 0.598
          - type: recall_at_1000
            value: 2.59
          - type: recall_at_3
            value: 0
          - type: recall_at_5
            value: 0.093
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWebmastersRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0
          - type: map_at_10
            value: 0
          - type: map_at_100
            value: 0.015
          - type: map_at_1000
            value: 0.03
          - type: map_at_3
            value: 0
          - type: map_at_5
            value: 0
          - type: mrr_at_1
            value: 0
          - type: mrr_at_10
            value: 0
          - type: mrr_at_100
            value: 0.062
          - type: mrr_at_1000
            value: 0.083
          - type: mrr_at_3
            value: 0
          - type: mrr_at_5
            value: 0
          - type: ndcg_at_1
            value: 0
          - type: ndcg_at_10
            value: 0
          - type: ndcg_at_100
            value: 0.17700000000000002
          - type: ndcg_at_1000
            value: 0.9299999999999999
          - type: ndcg_at_3
            value: 0
          - type: ndcg_at_5
            value: 0
          - type: precision_at_1
            value: 0
          - type: precision_at_10
            value: 0
          - type: precision_at_100
            value: 0.027999999999999997
          - type: precision_at_1000
            value: 0.023
          - type: precision_at_3
            value: 0
          - type: precision_at_5
            value: 0
          - type: recall_at_1
            value: 0
          - type: recall_at_10
            value: 0
          - type: recall_at_100
            value: 0.894
          - type: recall_at_1000
            value: 6.639
          - type: recall_at_3
            value: 0
          - type: recall_at_5
            value: 0
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWordpressRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0
          - type: map_at_10
            value: 0
          - type: map_at_100
            value: 0
          - type: map_at_1000
            value: 0.006999999999999999
          - type: map_at_3
            value: 0
          - type: map_at_5
            value: 0
          - type: mrr_at_1
            value: 0
          - type: mrr_at_10
            value: 0
          - type: mrr_at_100
            value: 0
          - type: mrr_at_1000
            value: 0.009000000000000001
          - type: mrr_at_3
            value: 0
          - type: mrr_at_5
            value: 0
          - type: ndcg_at_1
            value: 0
          - type: ndcg_at_10
            value: 0
          - type: ndcg_at_100
            value: 0
          - type: ndcg_at_1000
            value: 0.35200000000000004
          - type: ndcg_at_3
            value: 0
          - type: ndcg_at_5
            value: 0
          - type: precision_at_1
            value: 0
          - type: precision_at_10
            value: 0
          - type: precision_at_100
            value: 0
          - type: precision_at_1000
            value: 0.004
          - type: precision_at_3
            value: 0
          - type: precision_at_5
            value: 0
          - type: recall_at_1
            value: 0
          - type: recall_at_10
            value: 0
          - type: recall_at_100
            value: 0
          - type: recall_at_1000
            value: 2.864
          - type: recall_at_3
            value: 0
          - type: recall_at_5
            value: 0
      - task:
          type: Retrieval
        dataset:
          type: climate-fever
          name: MTEB ClimateFEVER
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.033
          - type: map_at_10
            value: 0.034
          - type: map_at_100
            value: 0.037
          - type: map_at_1000
            value: 0.039
          - type: map_at_3
            value: 0.033
          - type: map_at_5
            value: 0.033
          - type: mrr_at_1
            value: 0.065
          - type: mrr_at_10
            value: 0.07200000000000001
          - type: mrr_at_100
            value: 0.08
          - type: mrr_at_1000
            value: 0.086
          - type: mrr_at_3
            value: 0.065
          - type: mrr_at_5
            value: 0.065
          - type: ndcg_at_1
            value: 0.065
          - type: ndcg_at_10
            value: 0.047
          - type: ndcg_at_100
            value: 0.079
          - type: ndcg_at_1000
            value: 0.19
          - type: ndcg_at_3
            value: 0.04
          - type: ndcg_at_5
            value: 0.04
          - type: precision_at_1
            value: 0.065
          - type: precision_at_10
            value: 0.013
          - type: precision_at_100
            value: 0.005
          - type: precision_at_1000
            value: 0.002
          - type: precision_at_3
            value: 0.022000000000000002
          - type: precision_at_5
            value: 0.013
          - type: recall_at_1
            value: 0.033
          - type: recall_at_10
            value: 0.049
          - type: recall_at_100
            value: 0.186
          - type: recall_at_1000
            value: 0.9199999999999999
          - type: recall_at_3
            value: 0.033
          - type: recall_at_5
            value: 0.033
      - task:
          type: Retrieval
        dataset:
          type: dbpedia-entity
          name: MTEB DBPedia
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0
          - type: map_at_10
            value: 0
          - type: map_at_100
            value: 0.008
          - type: map_at_1000
            value: 0.008
          - type: map_at_3
            value: 0
          - type: map_at_5
            value: 0
          - type: mrr_at_1
            value: 0
          - type: mrr_at_10
            value: 0
          - type: mrr_at_100
            value: 0.066
          - type: mrr_at_1000
            value: 0.077
          - type: mrr_at_3
            value: 0
          - type: mrr_at_5
            value: 0
          - type: ndcg_at_1
            value: 0
          - type: ndcg_at_10
            value: 0
          - type: ndcg_at_100
            value: 0.08
          - type: ndcg_at_1000
            value: 0.131
          - type: ndcg_at_3
            value: 0
          - type: ndcg_at_5
            value: 0
          - type: precision_at_1
            value: 0
          - type: precision_at_10
            value: 0
          - type: precision_at_100
            value: 0.018000000000000002
          - type: precision_at_1000
            value: 0.006999999999999999
          - type: precision_at_3
            value: 0
          - type: precision_at_5
            value: 0
          - type: recall_at_1
            value: 0
          - type: recall_at_10
            value: 0
          - type: recall_at_100
            value: 0.133
          - type: recall_at_1000
            value: 0.293
          - type: recall_at_3
            value: 0
          - type: recall_at_5
            value: 0
      - task:
          type: Classification
        dataset:
          type: mteb/emotion
          name: MTEB EmotionClassification
          config: default
          split: test
          revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
        metrics:
          - type: accuracy
            value: 19.57
          - type: f1
            value: 16.51103261738041
      - task:
          type: Retrieval
        dataset:
          type: fever
          name: MTEB FEVER
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.068
          - type: map_at_10
            value: 0.104
          - type: map_at_100
            value: 0.11
          - type: map_at_1000
            value: 0.11299999999999999
          - type: map_at_3
            value: 0.095
          - type: map_at_5
            value: 0.098
          - type: mrr_at_1
            value: 0.075
          - type: mrr_at_10
            value: 0.11299999999999999
          - type: mrr_at_100
            value: 0.11900000000000001
          - type: mrr_at_1000
            value: 0.123
          - type: mrr_at_3
            value: 0.10300000000000001
          - type: mrr_at_5
            value: 0.106
          - type: ndcg_at_1
            value: 0.075
          - type: ndcg_at_10
            value: 0.128
          - type: ndcg_at_100
            value: 0.167
          - type: ndcg_at_1000
            value: 0.291
          - type: ndcg_at_3
            value: 0.105
          - type: ndcg_at_5
            value: 0.11100000000000002
          - type: precision_at_1
            value: 0.075
          - type: precision_at_10
            value: 0.021
          - type: precision_at_100
            value: 0.004
          - type: precision_at_1000
            value: 0.002
          - type: precision_at_3
            value: 0.045
          - type: precision_at_5
            value: 0.03
          - type: recall_at_1
            value: 0.068
          - type: recall_at_10
            value: 0.19499999999999998
          - type: recall_at_100
            value: 0.40299999999999997
          - type: recall_at_1000
            value: 1.448
          - type: recall_at_3
            value: 0.128
          - type: recall_at_5
            value: 0.14300000000000002
      - task:
          type: Retrieval
        dataset:
          type: fiqa
          name: MTEB FiQA2018
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0
          - type: map_at_10
            value: 0
          - type: map_at_100
            value: 0.005
          - type: map_at_1000
            value: 0.01
          - type: map_at_3
            value: 0
          - type: map_at_5
            value: 0
          - type: mrr_at_1
            value: 0
          - type: mrr_at_10
            value: 0
          - type: mrr_at_100
            value: 0.011000000000000001
          - type: mrr_at_1000
            value: 0.026
          - type: mrr_at_3
            value: 0
          - type: mrr_at_5
            value: 0
          - type: ndcg_at_1
            value: 0
          - type: ndcg_at_10
            value: 0
          - type: ndcg_at_100
            value: 0.06999999999999999
          - type: ndcg_at_1000
            value: 0.38899999999999996
          - type: ndcg_at_3
            value: 0
          - type: ndcg_at_5
            value: 0
          - type: precision_at_1
            value: 0
          - type: precision_at_10
            value: 0
          - type: precision_at_100
            value: 0.008
          - type: precision_at_1000
            value: 0.006999999999999999
          - type: precision_at_3
            value: 0
          - type: precision_at_5
            value: 0
          - type: recall_at_1
            value: 0
          - type: recall_at_10
            value: 0
          - type: recall_at_100
            value: 0.383
          - type: recall_at_1000
            value: 2.435
          - type: recall_at_3
            value: 0
          - type: recall_at_5
            value: 0
      - task:
          type: Retrieval
        dataset:
          type: hotpotqa
          name: MTEB HotpotQA
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.013999999999999999
          - type: map_at_10
            value: 0.018000000000000002
          - type: map_at_100
            value: 0.019
          - type: map_at_1000
            value: 0.02
          - type: map_at_3
            value: 0.016
          - type: map_at_5
            value: 0.016
          - type: mrr_at_1
            value: 0.027
          - type: mrr_at_10
            value: 0.034999999999999996
          - type: mrr_at_100
            value: 0.038
          - type: mrr_at_1000
            value: 0.039
          - type: mrr_at_3
            value: 0.032
          - type: mrr_at_5
            value: 0.032
          - type: ndcg_at_1
            value: 0.027
          - type: ndcg_at_10
            value: 0.026
          - type: ndcg_at_100
            value: 0.038
          - type: ndcg_at_1000
            value: 0.064
          - type: ndcg_at_3
            value: 0.021
          - type: ndcg_at_5
            value: 0.021
          - type: precision_at_1
            value: 0.027
          - type: precision_at_10
            value: 0.006999999999999999
          - type: precision_at_100
            value: 0.002
          - type: precision_at_1000
            value: 0.001
          - type: precision_at_3
            value: 0.013999999999999999
          - type: precision_at_5
            value: 0.008
          - type: recall_at_1
            value: 0.013999999999999999
          - type: recall_at_10
            value: 0.034
          - type: recall_at_100
            value: 0.08800000000000001
          - type: recall_at_1000
            value: 0.27
          - type: recall_at_3
            value: 0.02
          - type: recall_at_5
            value: 0.02
      - task:
          type: Classification
        dataset:
          type: mteb/imdb
          name: MTEB ImdbClassification
          config: default
          split: test
          revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
        metrics:
          - type: accuracy
            value: 55.4624
          - type: ap
            value: 53.20545827965495
          - type: f1
            value: 54.40019244805333
      - task:
          type: Retrieval
        dataset:
          type: msmarco
          name: MTEB MSMARCO
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 0.086
          - type: map_at_10
            value: 0.109
          - type: map_at_100
            value: 0.11499999999999999
          - type: map_at_1000
            value: 0.11800000000000001
          - type: map_at_3
            value: 0.091
          - type: map_at_5
            value: 0.101
          - type: mrr_at_1
            value: 0.086
          - type: mrr_at_10
            value: 0.109
          - type: mrr_at_100
            value: 0.11499999999999999
          - type: mrr_at_1000
            value: 0.11800000000000001
          - type: mrr_at_3
            value: 0.091
          - type: mrr_at_5
            value: 0.101
          - type: ndcg_at_1
            value: 0.086
          - type: ndcg_at_10
            value: 0.133
          - type: ndcg_at_100
            value: 0.168
          - type: ndcg_at_1000
            value: 0.259
          - type: ndcg_at_3
            value: 0.093
          - type: ndcg_at_5
            value: 0.11100000000000002
          - type: precision_at_1
            value: 0.086
          - type: precision_at_10
            value: 0.021
          - type: precision_at_100
            value: 0.004
          - type: precision_at_1000
            value: 0.001
          - type: precision_at_3
            value: 0.033
          - type: precision_at_5
            value: 0.029
          - type: recall_at_1
            value: 0.086
          - type: recall_at_10
            value: 0.215
          - type: recall_at_100
            value: 0.387
          - type: recall_at_1000
            value: 1.1560000000000001
          - type: recall_at_3
            value: 0.1
          - type: recall_at_5
            value: 0.14300000000000002
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (en)
          config: en
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 34.42544459644323
          - type: f1
            value: 33.610930846065315
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (de)
          config: de
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 27.511975204282894
          - type: f1
            value: 25.84277270994464
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (es)
          config: es
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 29.51967978652435
          - type: f1
            value: 27.67290779782277
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (fr)
          config: fr
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 26.003758221108676
          - type: f1
            value: 23.831315642315282
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (hi)
          config: hi
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 20.132664037289356
          - type: f1
            value: 16.737043939830457
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (th)
          config: th
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 14.701627486437612
          - type: f1
            value: 10.849797498613762
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (en)
          config: en
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 13.948928408572733
          - type: f1
            value: 8.562615846233708
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (de)
          config: de
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 11.814595660749507
          - type: f1
            value: 5.353787568647624
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (es)
          config: es
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 12.468312208138759
          - type: f1
            value: 7.566990405355253
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (fr)
          config: fr
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 9.320388349514563
          - type: f1
            value: 5.916218245687591
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (hi)
          config: hi
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 3.2377196127644314
          - type: f1
            value: 1.2053714075016808
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (th)
          config: th
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 4.4159132007233275
          - type: f1
            value: 1.1992998118559788
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (it)
          config: it
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 22.299932750504368
          - type: f1
            value: 20.147804322480262
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (it)
          config: it
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 27.40753194351042
          - type: f1
            value: 25.187141587127705
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-p2p
          name: MTEB MedrxivClusteringP2P
          config: default
          split: test
          revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
        metrics:
          - type: v_measure
            value: 11.797082944399047
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-s2s
          name: MTEB MedrxivClusteringS2S
          config: default
          split: test
          revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
        metrics:
          - type: v_measure
            value: 11.059126362649126
      - task:
          type: Reranking
        dataset:
          type: mteb/mind_small
          name: MTEB MindSmallReranking
          config: default
          split: test
          revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
        metrics:
          - type: map
            value: 24.452301182586798
          - type: mrr
            value: 24.374807287562085
      - task:
          type: Retrieval
        dataset:
          type: nfcorpus
          name: MTEB NFCorpus
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.03
          - type: map_at_10
            value: 0.075
          - type: map_at_100
            value: 0.208
          - type: map_at_1000
            value: 0.529
          - type: map_at_3
            value: 0.051000000000000004
          - type: map_at_5
            value: 0.055999999999999994
          - type: mrr_at_1
            value: 1.238
          - type: mrr_at_10
            value: 2.939
          - type: mrr_at_100
            value: 3.927
          - type: mrr_at_1000
            value: 4.117
          - type: mrr_at_3
            value: 1.806
          - type: mrr_at_5
            value: 2.286
          - type: ndcg_at_1
            value: 1.084
          - type: ndcg_at_10
            value: 1.133
          - type: ndcg_at_100
            value: 2.1399999999999997
          - type: ndcg_at_1000
            value: 9.362
          - type: ndcg_at_3
            value: 0.9299999999999999
          - type: ndcg_at_5
            value: 0.958
          - type: precision_at_1
            value: 1.238
          - type: precision_at_10
            value: 1.269
          - type: precision_at_100
            value: 1.155
          - type: precision_at_1000
            value: 1.0250000000000001
          - type: precision_at_3
            value: 1.032
          - type: precision_at_5
            value: 1.053
          - type: recall_at_1
            value: 0.03
          - type: recall_at_10
            value: 0.22200000000000003
          - type: recall_at_100
            value: 3.779
          - type: recall_at_1000
            value: 29.471000000000004
          - type: recall_at_3
            value: 0.087
          - type: recall_at_5
            value: 0.11199999999999999
      - task:
          type: Retrieval
        dataset:
          type: nq
          name: MTEB NQ
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0
          - type: map_at_10
            value: 0.012
          - type: map_at_100
            value: 0.025
          - type: map_at_1000
            value: 0.027
          - type: map_at_3
            value: 0
          - type: map_at_5
            value: 0.006999999999999999
          - type: mrr_at_1
            value: 0
          - type: mrr_at_10
            value: 0.012
          - type: mrr_at_100
            value: 0.026
          - type: mrr_at_1000
            value: 0.029
          - type: mrr_at_3
            value: 0
          - type: mrr_at_5
            value: 0.006999999999999999
          - type: ndcg_at_1
            value: 0
          - type: ndcg_at_10
            value: 0.023
          - type: ndcg_at_100
            value: 0.092
          - type: ndcg_at_1000
            value: 0.16999999999999998
          - type: ndcg_at_3
            value: 0
          - type: ndcg_at_5
            value: 0.012
          - type: precision_at_1
            value: 0
          - type: precision_at_10
            value: 0.006
          - type: precision_at_100
            value: 0.004
          - type: precision_at_1000
            value: 0.001
          - type: precision_at_3
            value: 0
          - type: precision_at_5
            value: 0.006
          - type: recall_at_1
            value: 0
          - type: recall_at_10
            value: 0.058
          - type: recall_at_100
            value: 0.377
          - type: recall_at_1000
            value: 1.009
          - type: recall_at_3
            value: 0
          - type: recall_at_5
            value: 0.029
      - task:
          type: Retrieval
        dataset:
          type: quora
          name: MTEB QuoraRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 8.943
          - type: map_at_10
            value: 10.557
          - type: map_at_100
            value: 10.777000000000001
          - type: map_at_1000
            value: 10.812
          - type: map_at_3
            value: 10.137
          - type: map_at_5
            value: 10.351
          - type: mrr_at_1
            value: 10.51
          - type: mrr_at_10
            value: 12.229
          - type: mrr_at_100
            value: 12.468
          - type: mrr_at_1000
            value: 12.504999999999999
          - type: mrr_at_3
            value: 11.777
          - type: mrr_at_5
            value: 12.014
          - type: ndcg_at_1
            value: 10.5
          - type: ndcg_at_10
            value: 11.715
          - type: ndcg_at_100
            value: 12.925
          - type: ndcg_at_1000
            value: 14.163
          - type: ndcg_at_3
            value: 10.968
          - type: ndcg_at_5
            value: 11.264000000000001
          - type: precision_at_1
            value: 10.5
          - type: precision_at_10
            value: 1.696
          - type: precision_at_100
            value: 0.248
          - type: precision_at_1000
            value: 0.039
          - type: precision_at_3
            value: 4.623
          - type: precision_at_5
            value: 3.012
          - type: recall_at_1
            value: 8.943
          - type: recall_at_10
            value: 13.746
          - type: recall_at_100
            value: 19.521
          - type: recall_at_1000
            value: 29.255
          - type: recall_at_3
            value: 11.448
          - type: recall_at_5
            value: 12.332
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering
          name: MTEB RedditClustering
          config: default
          split: test
          revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
        metrics:
          - type: v_measure
            value: 4.845410629021448
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering-p2p
          name: MTEB RedditClusteringP2P
          config: default
          split: test
          revision: 282350215ef01743dc01b456c7f5241fa8937f16
        metrics:
          - type: v_measure
            value: 11.661900277329933
      - task:
          type: Retrieval
        dataset:
          type: scidocs
          name: MTEB SCIDOCS
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.02
          - type: map_at_10
            value: 0.036000000000000004
          - type: map_at_100
            value: 0.056999999999999995
          - type: map_at_1000
            value: 0.07200000000000001
          - type: map_at_3
            value: 0.03
          - type: map_at_5
            value: 0.03
          - type: mrr_at_1
            value: 0.1
          - type: mrr_at_10
            value: 0.181
          - type: mrr_at_100
            value: 0.27899999999999997
          - type: mrr_at_1000
            value: 0.335
          - type: mrr_at_3
            value: 0.15
          - type: mrr_at_5
            value: 0.15
          - type: ndcg_at_1
            value: 0.1
          - type: ndcg_at_10
            value: 0.079
          - type: ndcg_at_100
            value: 0.28200000000000003
          - type: ndcg_at_1000
            value: 1.228
          - type: ndcg_at_3
            value: 0.077
          - type: ndcg_at_5
            value: 0.055
          - type: precision_at_1
            value: 0.1
          - type: precision_at_10
            value: 0.04
          - type: precision_at_100
            value: 0.034
          - type: precision_at_1000
            value: 0.027999999999999997
          - type: precision_at_3
            value: 0.067
          - type: precision_at_5
            value: 0.04
          - type: recall_at_1
            value: 0.02
          - type: recall_at_10
            value: 0.08
          - type: recall_at_100
            value: 0.703
          - type: recall_at_1000
            value: 5.632000000000001
          - type: recall_at_3
            value: 0.04
          - type: recall_at_5
            value: 0.04
      - task:
          type: STS
        dataset:
          type: mteb/sickr-sts
          name: MTEB SICK-R
          config: default
          split: test
          revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
        metrics:
          - type: cos_sim_pearson
            value: 22.985682461739827
          - type: cos_sim_spearman
            value: 36.63211990852576
          - type: euclidean_pearson
            value: 30.883409587497358
          - type: euclidean_spearman
            value: 36.94600975857584
          - type: manhattan_pearson
            value: 36.736693988156894
          - type: manhattan_spearman
            value: 38.98446799028811
      - task:
          type: STS
        dataset:
          type: mteb/sts12-sts
          name: MTEB STS12
          config: default
          split: test
          revision: a0d554a64d88156834ff5ae9920b964011b16384
        metrics:
          - type: cos_sim_pearson
            value: 2.5604178523517063
          - type: cos_sim_spearman
            value: 13.628378324133767
          - type: euclidean_pearson
            value: 7.9904894312005865
          - type: euclidean_spearman
            value: 15.090689818973416
          - type: manhattan_pearson
            value: 14.011092205465575
          - type: manhattan_spearman
            value: 18.04386210573924
      - task:
          type: STS
        dataset:
          type: mteb/sts13-sts
          name: MTEB STS13
          config: default
          split: test
          revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
        metrics:
          - type: cos_sim_pearson
            value: 18.59414271348264
          - type: cos_sim_spearman
            value: 23.758346452530105
          - type: euclidean_pearson
            value: 22.985667268384162
          - type: euclidean_spearman
            value: 25.143580728437183
          - type: manhattan_pearson
            value: 28.109316236003
          - type: manhattan_spearman
            value: 29.403691387442727
      - task:
          type: STS
        dataset:
          type: mteb/sts14-sts
          name: MTEB STS14
          config: default
          split: test
          revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
        metrics:
          - type: cos_sim_pearson
            value: 8.292349216262673
          - type: cos_sim_spearman
            value: 15.648383623810028
          - type: euclidean_pearson
            value: 12.136605941196938
          - type: euclidean_spearman
            value: 16.37547051924145
          - type: manhattan_pearson
            value: 21.049918496319524
          - type: manhattan_spearman
            value: 22.168125518695295
      - task:
          type: STS
        dataset:
          type: mteb/sts15-sts
          name: MTEB STS15
          config: default
          split: test
          revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
        metrics:
          - type: cos_sim_pearson
            value: 21.0574858763695
          - type: cos_sim_spearman
            value: 28.24306393347735
          - type: euclidean_pearson
            value: 25.67620587891895
          - type: euclidean_spearman
            value: 28.802005577995292
          - type: manhattan_pearson
            value: 33.333168689238846
          - type: manhattan_spearman
            value: 33.7249701052437
      - task:
          type: STS
        dataset:
          type: mteb/sts16-sts
          name: MTEB STS16
          config: default
          split: test
          revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
        metrics:
          - type: cos_sim_pearson
            value: 23.345013082866608
          - type: cos_sim_spearman
            value: 32.08654087568418
          - type: euclidean_pearson
            value: 29.1302480053082
          - type: euclidean_spearman
            value: 32.723960824054224
          - type: manhattan_pearson
            value: 34.73363269084969
          - type: manhattan_spearman
            value: 35.946509333697016
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (ko-ko)
          config: ko-ko
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: -1.0510693376748088
          - type: cos_sim_spearman
            value: 3.7330446273344897
          - type: euclidean_pearson
            value: -0.2108306777168949
          - type: euclidean_spearman
            value: 3.627369552634812
          - type: manhattan_pearson
            value: 1.5031538964733262
          - type: manhattan_spearman
            value: 5.004910973166412
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (ar-ar)
          config: ar-ar
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 11.578393453214481
          - type: cos_sim_spearman
            value: 21.790827126422034
          - type: euclidean_pearson
            value: 19.06071141618503
          - type: euclidean_spearman
            value: 22.161779839314196
          - type: manhattan_pearson
            value: 17.725623325242474
          - type: manhattan_spearman
            value: 20.43157514666076
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-ar)
          config: en-ar
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 17.29239442081278
          - type: cos_sim_spearman
            value: 16.292056207420202
          - type: euclidean_pearson
            value: 16.503491974377727
          - type: euclidean_spearman
            value: 15.541440440884651
          - type: manhattan_pearson
            value: 21.158901085317268
          - type: manhattan_spearman
            value: 21.781541830999963
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-de)
          config: en-de
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 22.589778414759955
          - type: cos_sim_spearman
            value: 18.997838545450612
          - type: euclidean_pearson
            value: 21.90016323186628
          - type: euclidean_spearman
            value: 18.905160536986692
          - type: manhattan_pearson
            value: 16.913499882046576
          - type: manhattan_spearman
            value: 15.669617887287327
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-en)
          config: en-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 33.05366168385912
          - type: cos_sim_spearman
            value: 37.781952608504135
          - type: euclidean_pearson
            value: 37.085941074268966
          - type: euclidean_spearman
            value: 37.8364215997913
          - type: manhattan_pearson
            value: 42.316206028770736
          - type: manhattan_spearman
            value: 41.74208275697782
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-tr)
          config: en-tr
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 23.991765076225654
          - type: cos_sim_spearman
            value: 20.588105042260104
          - type: euclidean_pearson
            value: 19.712724760717997
          - type: euclidean_spearman
            value: 19.253030106327383
          - type: manhattan_pearson
            value: 16.84198288544301
          - type: manhattan_spearman
            value: 17.61549197324614
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (es-en)
          config: es-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 24.968980346008365
          - type: cos_sim_spearman
            value: 27.252856647926286
          - type: euclidean_pearson
            value: 24.58496162769602
          - type: euclidean_spearman
            value: 26.034323771297824
          - type: manhattan_pearson
            value: 22.40058722998031
          - type: manhattan_spearman
            value: 24.459230575688714
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (es-es)
          config: es-es
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 32.94464820482554
          - type: cos_sim_spearman
            value: 40.462017863354085
          - type: euclidean_pearson
            value: 38.88676423326504
          - type: euclidean_spearman
            value: 40.47190508444464
          - type: manhattan_pearson
            value: 39.692234741895874
          - type: manhattan_spearman
            value: 39.478725017400166
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (fr-en)
          config: fr-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 23.342163445031748
          - type: cos_sim_spearman
            value: 27.27097487628386
          - type: euclidean_pearson
            value: 24.76789948947651
          - type: euclidean_spearman
            value: 25.81926286149811
          - type: manhattan_pearson
            value: 25.475723026689685
          - type: manhattan_spearman
            value: 25.813420033921787
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (it-en)
          config: it-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 7.717130622537516
          - type: cos_sim_spearman
            value: 9.437435044381033
          - type: euclidean_pearson
            value: 7.9423592614250555
          - type: euclidean_spearman
            value: 8.010785684725303
          - type: manhattan_pearson
            value: 8.217253457576026
          - type: manhattan_spearman
            value: 8.247881477427692
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (nl-en)
          config: nl-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 16.16499446427259
          - type: cos_sim_spearman
            value: 17.21754435880688
          - type: euclidean_pearson
            value: 16.325415307049443
          - type: euclidean_spearman
            value: 16.293339731059863
          - type: manhattan_pearson
            value: 19.410680542804005
          - type: manhattan_spearman
            value: 18.95736158862253
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (it)
          config: it
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 30.67175493186678
          - type: cos_sim_spearman
            value: 37.92638638971281
          - type: euclidean_pearson
            value: 37.47072224334179
          - type: euclidean_spearman
            value: 39.23036609148336
          - type: manhattan_pearson
            value: 42.92657347688227
          - type: manhattan_spearman
            value: 43.93955531904934
      - task:
          type: STS
        dataset:
          type: mteb/stsbenchmark-sts
          name: MTEB STSBenchmark
          config: default
          split: test
          revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
        metrics:
          - type: cos_sim_pearson
            value: 15.51842992576514
          - type: cos_sim_spearman
            value: 22.738964472371965
          - type: euclidean_pearson
            value: 20.68981398028433
          - type: euclidean_spearman
            value: 23.35518754871016
          - type: manhattan_pearson
            value: 26.488467867333142
          - type: manhattan_spearman
            value: 27.318174781418055
      - task:
          type: Reranking
        dataset:
          type: mteb/scidocs-reranking
          name: MTEB SciDocsRR
          config: default
          split: test
          revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
        metrics:
          - type: map
            value: 30.728870040728083
          - type: mrr
            value: 45.1852849401869
      - task:
          type: Retrieval
        dataset:
          type: scifact
          name: MTEB SciFact
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0
          - type: map_at_10
            value: 0.104
          - type: map_at_100
            value: 0.265
          - type: map_at_1000
            value: 0.334
          - type: map_at_3
            value: 0
          - type: map_at_5
            value: 0.067
          - type: mrr_at_1
            value: 0
          - type: mrr_at_10
            value: 0.104
          - type: mrr_at_100
            value: 0.27
          - type: mrr_at_1000
            value: 0.345
          - type: mrr_at_3
            value: 0
          - type: mrr_at_5
            value: 0.067
          - type: ndcg_at_1
            value: 0
          - type: ndcg_at_10
            value: 0.22899999999999998
          - type: ndcg_at_100
            value: 1.044
          - type: ndcg_at_1000
            value: 3.911
          - type: ndcg_at_3
            value: 0
          - type: ndcg_at_5
            value: 0.129
          - type: precision_at_1
            value: 0
          - type: precision_at_10
            value: 0.067
          - type: precision_at_100
            value: 0.05
          - type: precision_at_1000
            value: 0.032
          - type: precision_at_3
            value: 0
          - type: precision_at_5
            value: 0.067
          - type: recall_at_1
            value: 0
          - type: recall_at_10
            value: 0.6669999999999999
          - type: recall_at_100
            value: 4.583
          - type: recall_at_1000
            value: 28.910999999999998
          - type: recall_at_3
            value: 0
          - type: recall_at_5
            value: 0.333
      - task:
          type: PairClassification
        dataset:
          type: mteb/sprintduplicatequestions-pairclassification
          name: MTEB SprintDuplicateQuestions
          config: default
          split: test
          revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
        metrics:
          - type: cos_sim_accuracy
            value: 99.01089108910891
          - type: cos_sim_ap
            value: 2.649295518982714
          - type: cos_sim_f1
            value: 6.26322471434617
          - type: cos_sim_precision
            value: 3.972088030059045
          - type: cos_sim_recall
            value: 14.799999999999999
          - type: dot_accuracy
            value: 99.0089108910891
          - type: dot_ap
            value: 1.713700413108619
          - type: dot_f1
            value: 5.073705862187179
          - type: dot_precision
            value: 3.061646669424907
          - type: dot_recall
            value: 14.799999999999999
          - type: euclidean_accuracy
            value: 99.01089108910891
          - type: euclidean_ap
            value: 2.744099763470491
          - type: euclidean_f1
            value: 6.291706387035273
          - type: euclidean_precision
            value: 4.611085235211924
          - type: euclidean_recall
            value: 9.9
          - type: manhattan_accuracy
            value: 99.01089108910891
          - type: manhattan_ap
            value: 3.2781717730991327
          - type: manhattan_f1
            value: 7.68245838668374
          - type: manhattan_precision
            value: 10.676156583629894
          - type: manhattan_recall
            value: 6
          - type: max_accuracy
            value: 99.01089108910891
          - type: max_ap
            value: 3.2781717730991327
          - type: max_f1
            value: 7.68245838668374
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering
          name: MTEB StackExchangeClustering
          config: default
          split: test
          revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
        metrics:
          - type: v_measure
            value: 8.602221384568187
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering-p2p
          name: MTEB StackExchangeClusteringP2P
          config: default
          split: test
          revision: 815ca46b2622cec33ccafc3735d572c266efdb44
        metrics:
          - type: v_measure
            value: 25.619483506865205
      - task:
          type: Reranking
        dataset:
          type: mteb/stackoverflowdupquestions-reranking
          name: MTEB StackOverflowDupQuestions
          config: default
          split: test
          revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
        metrics:
          - type: map
            value: 20.02237719216371
          - type: mrr
            value: 18.132453739071387
      - task:
          type: Retrieval
        dataset:
          type: trec-covid
          name: MTEB TRECCOVID
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.004
          - type: map_at_10
            value: 0.009000000000000001
          - type: map_at_100
            value: 0.011000000000000001
          - type: map_at_1000
            value: 0.016
          - type: map_at_3
            value: 0.004
          - type: map_at_5
            value: 0.006999999999999999
          - type: mrr_at_1
            value: 2
          - type: mrr_at_10
            value: 4.233
          - type: mrr_at_100
            value: 4.936
          - type: mrr_at_1000
            value: 5.103
          - type: mrr_at_3
            value: 2
          - type: mrr_at_5
            value: 3.9
          - type: ndcg_at_1
            value: 1
          - type: ndcg_at_10
            value: 1.1039999999999999
          - type: ndcg_at_100
            value: 0.486
          - type: ndcg_at_1000
            value: 0.666
          - type: ndcg_at_3
            value: 0.469
          - type: ndcg_at_5
            value: 1.347
          - type: precision_at_1
            value: 2
          - type: precision_at_10
            value: 1.4000000000000001
          - type: precision_at_100
            value: 0.52
          - type: precision_at_1000
            value: 0.37
          - type: precision_at_3
            value: 0.6669999999999999
          - type: precision_at_5
            value: 2
          - type: recall_at_1
            value: 0.004
          - type: recall_at_10
            value: 0.024
          - type: recall_at_100
            value: 0.09
          - type: recall_at_1000
            value: 0.807
          - type: recall_at_3
            value: 0.004
          - type: recall_at_5
            value: 0.016
      - task:
          type: Retrieval
        dataset:
          type: webis-touche2020
          name: MTEB Touche2020
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0
          - type: map_at_10
            value: 0
          - type: map_at_100
            value: 0
          - type: map_at_1000
            value: 0
          - type: map_at_3
            value: 0
          - type: map_at_5
            value: 0
          - type: mrr_at_1
            value: 0
          - type: mrr_at_10
            value: 0
          - type: mrr_at_100
            value: 0
          - type: mrr_at_1000
            value: 0
          - type: mrr_at_3
            value: 0
          - type: mrr_at_5
            value: 0
          - type: ndcg_at_1
            value: 0
          - type: ndcg_at_10
            value: 0
          - type: ndcg_at_100
            value: 0
          - type: ndcg_at_1000
            value: 0
          - type: ndcg_at_3
            value: 0
          - type: ndcg_at_5
            value: 0
          - type: precision_at_1
            value: 0
          - type: precision_at_10
            value: 0
          - type: precision_at_100
            value: 0
          - type: precision_at_1000
            value: 0
          - type: precision_at_3
            value: 0
          - type: precision_at_5
            value: 0
          - type: recall_at_1
            value: 0
          - type: recall_at_10
            value: 0
          - type: recall_at_100
            value: 0
          - type: recall_at_1000
            value: 0
          - type: recall_at_3
            value: 0
          - type: recall_at_5
            value: 0
      - task:
          type: Classification
        dataset:
          type: mteb/toxic_conversations_50k
          name: MTEB ToxicConversationsClassification
          config: default
          split: test
          revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
        metrics:
          - type: accuracy
            value: 55.065799999999996
          - type: ap
            value: 8.3123142340845
          - type: f1
            value: 41.78797425886187
      - task:
          type: Classification
        dataset:
          type: mteb/tweet_sentiment_extraction
          name: MTEB TweetSentimentExtractionClassification
          config: default
          split: test
          revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
        metrics:
          - type: accuracy
            value: 41.177136389360506
          - type: f1
            value: 40.882588170909244
      - task:
          type: Clustering
        dataset:
          type: mteb/twentynewsgroups-clustering
          name: MTEB TwentyNewsgroupsClustering
          config: default
          split: test
          revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
        metrics:
          - type: v_measure
            value: 10.046104242285523
      - task:
          type: PairClassification
        dataset:
          type: mteb/twittersemeval2015-pairclassification
          name: MTEB TwitterSemEval2015
          config: default
          split: test
          revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
        metrics:
          - type: cos_sim_accuracy
            value: 77.63604935328128
          - type: cos_sim_ap
            value: 32.380569186976906
          - type: cos_sim_f1
            value: 38.29160530191458
          - type: cos_sim_precision
            value: 27.110086708374492
          - type: cos_sim_recall
            value: 65.17150395778364
          - type: dot_accuracy
            value: 77.40954878702986
          - type: dot_ap
            value: 28.34039741384004
          - type: dot_f1
            value: 37.45059908412271
          - type: dot_precision
            value: 24.565879351493706
          - type: dot_recall
            value: 78.7598944591029
          - type: euclidean_accuracy
            value: 77.63604935328128
          - type: euclidean_ap
            value: 32.40705726976434
          - type: euclidean_f1
            value: 38.365584519430676
          - type: euclidean_precision
            value: 27.524093620927033
          - type: euclidean_recall
            value: 63.298153034300796
          - type: manhattan_accuracy
            value: 77.70757584788699
          - type: manhattan_ap
            value: 33.03410839977045
          - type: manhattan_f1
            value: 39.04353514063523
          - type: manhattan_precision
            value: 26.943524927274552
          - type: manhattan_recall
            value: 70.87071240105541
          - type: max_accuracy
            value: 77.70757584788699
          - type: max_ap
            value: 33.03410839977045
          - type: max_f1
            value: 39.04353514063523
      - task:
          type: PairClassification
        dataset:
          type: mteb/twitterurlcorpus-pairclassification
          name: MTEB TwitterURLCorpus
          config: default
          split: test
          revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
        metrics:
          - type: cos_sim_accuracy
            value: 75.80626382582373
          - type: cos_sim_ap
            value: 41.94768516713251
          - type: cos_sim_f1
            value: 44.69374385849984
          - type: cos_sim_precision
            value: 34.620263870094725
          - type: cos_sim_recall
            value: 63.035109331690784
          - type: dot_accuracy
            value: 74.79528078550084
          - type: dot_ap
            value: 33.69361208467778
          - type: dot_f1
            value: 44.620064092118845
          - type: dot_precision
            value: 34.467567340773684
          - type: dot_recall
            value: 63.250692947336006
          - type: euclidean_accuracy
            value: 75.98866767570924
          - type: euclidean_ap
            value: 42.65497342948604
          - type: euclidean_f1
            value: 44.794497753619176
          - type: euclidean_precision
            value: 35.006501950585175
          - type: euclidean_recall
            value: 62.180474283954425
          - type: manhattan_accuracy
            value: 76.37870143982613
          - type: manhattan_ap
            value: 46.65401496383161
          - type: manhattan_f1
            value: 48.14085011643678
          - type: manhattan_precision
            value: 36.0535091417839
          - type: manhattan_recall
            value: 72.42069602710194
          - type: max_accuracy
            value: 76.37870143982613
          - type: max_ap
            value: 46.65401496383161
          - type: max_f1
            value: 48.14085011643678

pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers license: apache-2.0 datasets: - unicamp-dl/mmarco language: - it library_name: sentence-transformers

mmarco-sentence-flare-it

This is a sentence-transformers model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.

Usage (Sentence-Transformers)

Using this model becomes easy when you have sentence-transformers installed:

pip install -U sentence-transformers

Then you can use the model like this:

from sentence_transformers import SentenceTransformer, util

query = "Quante persone vivono a Londra?"
docs = ["A Londra vivono circa 9 milioni di persone", "Londra è conosciuta per il suo quartiere finanziario"]

#Load the model
model = SentenceTransformer('nickprock/mmarco-sentence-flare-it')

#Encode query and documents
query_emb = model.encode(query)
doc_emb = model.encode(docs)

#Compute dot score between query and all document embeddings
scores = util.dot_score(query_emb, doc_emb)[0].cpu().tolist()

#Combine docs & scores
doc_score_pairs = list(zip(docs, scores))

#Sort by decreasing score
doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)

#Output passages & scores
for doc, score in doc_score_pairs:
    print(score, doc)

Usage (HuggingFace Transformers)

Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.

from transformers import AutoTokenizer, AutoModel
import torch

#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output.last_hidden_state
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


#Encode text
def encode(texts):
    # Tokenize sentences
    encoded_input = tokenizer(texts, padding=True, truncation=True, return_tensors='pt')

    # Compute token embeddings
    with torch.no_grad():
        model_output = model(**encoded_input, return_dict=True)

    # Perform pooling
    embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

    return embeddings


# Sentences we want sentence embeddings for
query = "Quante persone vivono a Londra?"
docs = ["A Londra vivono circa 9 milioni di persone", "Londra è conosciuta per il suo quartiere finanziario"]

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained("nickprock/mmarco-sentence-flare-it")
model = AutoModel.from_pretrained("nickprock/mmarco-sentence-flare-it")

#Encode query and docs
query_emb = encode(query)
doc_emb = encode(docs)

#Compute dot score between query and all document embeddings
scores = torch.mm(query_emb, doc_emb.transpose(0, 1))[0].cpu().tolist()

#Combine docs & scores
doc_score_pairs = list(zip(docs, scores))

#Sort by decreasing score
doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)

#Output passages & scores
print("Query:", query)
for doc, score in doc_score_pairs:
    print(score, doc)

Evaluation Results

For an automated evaluation of this model, see the Sentence Embeddings Benchmark: https://seb.sbert.net

Training

The model was trained with the parameters:

DataLoader:

torch.utils.data.dataloader.DataLoader of length 7500 with parameters:

{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}

Loss:

sentence_transformers.losses.TripletLoss.TripletLoss with parameters:

{'distance_metric': 'TripletDistanceMetric.EUCLIDEAN', 'triplet_margin': 5}

Parameters of the fit()-Method:

{
    "epochs": 10,
    "evaluation_steps": 500,
    "evaluator": "sentence_transformers.evaluation.TripletEvaluator.TripletEvaluator",
    "max_grad_norm": 1,
    "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
    "optimizer_params": {
        "lr": 2e-05
    },
    "scheduler": "WarmupLinear",
    "steps_per_epoch": 1500,
    "warmup_steps": 7500,
    "weight_decay": 0.01
}

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)

Citing & Authors

More information about the base model here